首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of Venera 9 and 10 data suggest a comingled excitation of the ionosphere of Venus by the time dependent component of the interplanetary magnetic field, upon which may be super-imposed a contribution from the interplanetary electric field. The inductive contributions correspond respectively to generation of eddy currents and to unipolar induction, i.e., the TE and TM modes of classical electromagnetism. The former is suggested when the interplanetary magnetic field exhibits significant changes in intensity or orientation, but could also have contributions from fluctuations in plasma pressure expressed through the frozen-in field. Since the TM mode depends upon E=v c ×B, the TM mode can also have an unsteady component. The magnetic field measured near Venus by Venera 9 and 10 is considered within this framework and with respect to laboratory simulation using both conducting and insulated (but internally conducting) spheres.  相似文献   

2.
The gravity field of Venus has been modeled by a spherical harmonic expansion of the potential to degree and order seven. The estimates of these coefficients were obtained by combining information from 43 short arcs (4 hr) of line-of-sight Doppler data centered at periapsis. The data arcs were distributed in longitude and time over more than two circulations of Venus by the Pioneer Venus Orbiter subperiapsis point which was confined to the band of latitudes from 14°N to 17°N. Convergence of the solution has been assured by iterating upon the initial estimate. All estimates were performed with zero a priori information on the gravity coefficients. Since the altitude of periapsis for most of the orbits was within the sensible Venusian atmosphere, drag effects on the estimated harmonics have been removed using an exponential atmosphere density model. Estimates of the mass parameter (GM) of Venus using this dataset are also evaluated.  相似文献   

3.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

4.
Previous studies confirm that sand can be entrained at the wind velocities recorded on Venus. Present results describe bedforms produced in the Venus Wind Tunnel (VWT) simulating the average Venusian environment. Even at the low wind speeds measured on Venus, dunelike structures form in fine-grained quartz sands (particles 50–200 μm in diameter). The dunelike structures, referred to as microdunes, are considered to be true dunes analogous to those on Earth because they have (1) slip faces, (2) a lack of particle-size sorting, (3) a low ratio of saltation path length to dune length, and (4) internal cross-bedding. The microdunes typically produced in the VWT are 9 cm long and 0.75 cm high. It is proposed that there may be fields of microdunes on Venus that are capable of very fast rates of migration and that they may grow into features much larger than those observed in the VWT. However, neither dunes nor other types of features develop above a wind speed of ~ 1.5 m/sec; at this wind speed, the bed is flat and featureless. Thus, it is predicted that relatively short periods of higher winds may destroy microdunes and other small bedforms which could account for the sparsity of definitive aeolian features observed in Venera images. Some apparent cross-bedding observed in Venera images, however, could represent preserved aeolian structures.  相似文献   

5.
Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (~70–120 km). The O2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ~30° contour of the anti-solar point. The quality of agreement decreases past ~30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O2 (1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.  相似文献   

6.
《Planetary and Space Science》2006,54(13-14):1336-1343
The Venus Express mission is scheduled for launch in 2005. Among many other instruments, it carries a magnetometer to investigate the Venus plasma environment. Although Venus has no intrinsic magnetic moment, magnetic field measurements are essential in studying the solar wind interaction with Venus. Our current understanding of the solar wind interaction with Venus is mainly from the long lasting Pioneer Venus Orbiter (PVO) observations. In this paper, we briefly describe the magnetic field experiment of the Venus Express mission. We compare Venus Express mission with PVO mission with respect to the solar wind interaction with Venus. Then we discuss what we will achieve with the upcoming Venus Express mission.  相似文献   

7.
《Planetary and Space Science》2006,54(13-14):1457-1471
Observations of oxygen pickup ions by the plasma analyzer on the Pioneer Venus Orbiter (PVO) Mission arguably launched broad interest in solar wind erosion of unmagnetized planet atmospheres, and its potential evolutionary effects. Oxygen pickup ions may play key roles in the removal of the oxygen excess left behind from the photodissociation of water vapor by enabling direct escape, additional sputtering of oxygen when they impact the exobase, and escape as energetic neutrals produced in charge exchange reactions with the ambient exospheric oxygen and hydrogen. Although the PVO observations were compromised by an ∼8 keV energy limit for O+ detection, a lack of ion composition capability, and the limited sampling and data rate of the plasma analyzer which was designed for solar wind monitoring, these measurements provide our best information about the extended O+ exosphere and wake at Venus. Here we show the full picture of the spatial distribution and energies of the O+ ion observations collected by the plasma analyzer during PVO's ∼5000 orbit tour. A model of O+ test particles launched in the circum-Venus fields described by an MHD simulation of the solar wind interaction is used to help interpret the PVO observations and to anticipate the expanded view of Venus O+ escape that will be provided by the ASPERA-4 experiment on Venus Express.  相似文献   

8.
The formation of annular features on Venus, the so-called coronae, is modeled. It is common practice to associate their formation with the uplift and relaxation of hot mantle diapirs. We managed to partially reproduce the topography and structural pattern of the initial stage of corona evolution, a radially fractured dome, by lifting and lowering a piston under a layer of sand with consistent oil or moist clay. We failed to model a dense radial fracturing, which is typical of the earliest stage of corona evolution. We were able to reproduce the necessary attribute of coronae, concentric structures, which are commonly assumed to be formed at the stage of dome relaxation. Their formation mechanism in our experiments can serve only as a partial analog of the processes that produce corona rims. There is an obvious need to use more accurate models. Nevertheless, our modeling shows that the brittle deformations manifest themselves more clearly than do the plastic ones in the formation of dome-shaped uplift during the generation of natural coronae. The modeling also shows that the pattern of deformation within the dome-shaped uplift depends to some extent on the relationship between the layer thickness and the cross-sectional piston sizes. The latter can be a model for the relationship between the lithosphere thickness and the cross-sectional sizes of the mantle diapir that form a corona.  相似文献   

9.
Recent spacecraft observations of Venus permit a detailed model of sulfur chemistry in the atmosphere-lithosphere system. Pioneer Venus experiments confirm that, as predicted, COS and H2S are dominant over SO2 in the lower atmosphere, and that the equilibrium concentrations of S2 and S3 are significant. Many criteria serve to bracket the oxidation state of the crust: it is nearly certain that the S22?/SO42? buffer regulates the oxygen fucagity, and that FeO is at least as abundant as Fe2O3 in crustal silicates. A highly oxidized crust (as, for example, would result from O2 absorption complementary to escape of vast amounts of H2) is incompatible with the gas-phase sulfur chemistry. If the Pioneer Venus mass spectrometer estimates of the abundance of sulfur gases are correct, Earth-like models for the bulk composition of Venus are seriously in error, and a far lower FeO content is required for Venus.  相似文献   

10.
A thermodynamical analysis of the multicomponent system SiTiAlFeMnMgCaNaKPCHO open with respect to CO2, CO, H2O was carried out. Hydration and carbonatization processes are proposed to be geochemical consequences of the hypothesis of quasi-equilibrium conditions between the troposphere and crustal surface rocks. The probable rock-forming hydrated mineral phases are represented by epidote, glaucophane, tremolite, phlogopite, and annite; the carbonatization results in existence of calcite and dolomite as rock-forming minerals of weathered alkaline lavas. The surface rocks are assumed to have high ferric/ferrous iron ratios. The wollastonite equilibrium is rejected as a buffering chemical reaction. Hydrated minerals could be stable at least up to 5-km depths and contribute about 0.1 × 1024 g of H2O whereas about (0.7–0.8) × 1024 g of H2O would be consumed in ferrous iron oxidation with concomitant hydrogen dissipation. The distribution of H2O in the outer planetary shells is possibly a function of their temperatures.  相似文献   

11.
The interpretation of unexpected characteristics of Pioneer Venus temperature measurements, and of the large difference between these and the Venera results, is aided by new Venus temperature profiles derived from engineering measurements of the Pioneer Venus Small-Probe Net Flux Radiometer (SNFR) instruments. To facilitate correction of a temperature-dependent radiometric response, these instruments monitored the temperatures of their deployed radiation detectors. The accurate calibration of the temperature sensors, and their strong thermal coupling to the atmosphere, make it possible to deduce atmospheric temperatures within 2°K (at most altitudes) using a simple two-component thermal model to account for lag effects. These independent temperature profiles generally confirm to high accuracy, the small-probe results of A. Seiff, D. B. Kirk, R. E. Young, R. C. Blanchard, J. T. Findlay, G. M. Kelly, and S. C. Sommer (1980a, J. Geophys. Res.85, pp. 7903–7933) concerning vertical structure and horizontal contrast in the lower atmosphere, although the stable layer below 25 km is found to be slightly more stable (by about 0.4°K/km) and absolute temperatures are an average of 2°K higher. The measured Day-Night thermal contrast is compatible with predicted responses to the diurnal variation in solar heating, except near the cloud base, where 3–5°K differences may be due to thermal radiative heating differences associated with different cloud opacities. Temperature contrasts between latitudes 30 and 60° are roughly consistent with cyclostrophic balance. But pressure and temperature measurements by the Pioneer Venus Sounder probe at 4° latitude, when compared to Small-probe results, imply unreasonably large equatorward accelerations of 100 (m/sec)/day. Poleward accelerations compatible with cyclostrophic balance can be obtained if Sounder-probe temperatures are increased by a scale-factor correction reaching 6–7°K at 13 km.  相似文献   

12.
An analysis has been done of the topography and geologic structure of arachnoids—specific radial/concentric volcannic-tectonic structures on the surface of Venus. A representative sample (53 arachnoids) from 265 structures of this type, which are listed in the catalog of volcanic structures of the surface of Venus (Crumpler and Aubele, 2000), has been studied. The overwhelming majority of arachnoids are shown to be depressions that are commonly outlined by concentric extensional structures. Following Head et al. (1992) and Aittola and Kostama (2001), the assumption is confirmed and substantiated that arachnoids are formed by gravitational relaxation of small magmatic diapirs. Several types of arachnoids are identified on the basis of an analysis of structural patterns characteristic of such structures. It is also shown that the formation of different types of arachnoids depends on the depth of the magmatic diapir under the surface, on the thickness and reologic properties of the structures superposed on the evolving magmatic diapir, and on the character of regional stress fields that arise in the process of formation of such structures. The conclusion is drawn that most of the arachnoids were formed due to the gravitational relaxation of magmatic diapirs within the brittle part of the lithosphere, and some of them appeared as a result of the gravitational relaxation of radially fractured centers—novae. It is also shown that arachnoids are long-lived and multistep structures. At least some of them began to evolve before the formation of regional plains with wrinkle ridges, and their development ended after this event.  相似文献   

13.
《Icarus》1986,66(2):380-396
A series of experiments with a three dimensional general circulation model developed to simulate Earth's atmosphere is run with planetary rotation rates varying between 1 and 1/64 times Earth's rotation rate and diurnally averaged thermal forcing. Results are used to evaluate theories of Venus' atmospheric superrotation which invoke upward transport of angular momentum from the solid planet by the zonal mean (i.e., axisymmetric) circulation. The theories predict that superrotation is a common feature of slowly rotating planetary atmospheres, suggesting that superrotation should appear in the idealized slowly rotating cases of the present study. We find, however, that although dynamical mechanisms suggested for axisymmetric forcing of superrotation appear in model spinups from rest, the steady-state circulations include only weak globally averaged superrotation, consistent with previously reported results from lower resolution models. It appears that during spinup the thermally driven equator-to-pole circulation rapidly generates zonal-mean winds near the planetary surface which preclude vertical angular momentum transport and thus suppress further development of the superrotation. If this is the case, then the diurnally varying component of solar heating, such as atmospheric tides or the “moving flame”, must be included to explain Venus' strong atmospheric superrotation.  相似文献   

14.
McDonald GD  Thompson WR  Sagan C 《Icarus》1992,99(1):131-142
Low-pressure continuous-flow laboratory simulations of plasma induced chemistry in H2/He/CH4/NH3 atmospheres show radiation yields of hydrocarbons and nitrogen-containing organic compounds that increase with decreasing pressure in the range 2-200 mbar. Major products of these experiments that have been observed in the Jovian atmosphere are acetylene (C2H2), ethylene (C2H4), ethane (C2H6), hydrogen cyanide (HCN), propane (C3H8), and propyne (C3H4). Major products that have not yet been observed on Jupiter include acetonitrile (CH3CN), methylamine (CH3NH2), propene (C3H6), butane (C4H10), and butene (C4H8). Various other saturated and unsaturated hydrocarbons, as well as other amines and nitriles, are present in these experiments as minor products. We place upper limits of 10(6)-10(9) molecules cm-2 sec-1 on production rates of the major species from auroral chemistry in the Jovian stratosphere, and calculate stratospheric mole fraction contributions. This work shows that auroral processes may account for 10-100% of the total abundances of most observed organic species in the polar regions. Our experiments are consistent with models of Jovian polar stratospheric aerosol haze formation from polymerization of acetylene by secondary ultraviolet processing.  相似文献   

15.
Numerical simulations have been used to study high velocity two-body impacts. In this paper a two-dimensional Lagrangian finite difference hydrocode and a three-dimensional smooth particle hydrocode (SPH) are described and initial results reported.

The 2D hydrocode has successfully reproduced both the fragment size distribution and the mean fragment velocities from laboratory impact experiments using basalt and cement mortar. Further, the hydrocode calculations have determined that the energy needed to fracture a body has a much stronger dependence on target size than predicted from most scaling theories. In addition, velocity distributions obtained (using homogeneous targets at impact velocities around 2 km s−1) indicate that mean ejecta speeds resulting from large-body collisions do not generally exceed escape velocities.

The SPH model provides a fully three-dimensional framework for studying impacts, so that phenomena such as oblique collisions or impacts into non-spherical targets may be studied. The gridless code allows for arbitrary levels of distortion, and is hence appropriate for modeling the large-scale deformations which accompany most impact events. Because fragments are modeled explicitly, greater numerical accuracy is achieved in the regions of large fragments than with the purely statistical approach of the 2D model. Of course, this accuracy comes at the expense of significantly greater computational requirements.

These codes can be, and have been, used to make specific predictions about particular objects in our solar system. But more significantly, they allow us to explore a broad range of collisional events. Certain parameters (size, time) can be studied only over a very restricted range within the laboratory; other parameters (initial spin, low gravity, exotic structure or composition) are difficult to study at all experimentally. The outcomes of numerical simulations lead to a more general and accurate understanding of impacts in their many forms.  相似文献   


16.
OSO-III was placed into orbit on March 8, 1967; observations were made of the solar extreme ultraviolet, soft and hard solar X-rays, cosmic X-rays and -rays, cosmic ray particles, and the near-earth optical wavelength radiation environment.  相似文献   

17.
18.
Venus and Earth display different hypsography. We use topographic profiles to search for well-understood terrestrial analogs to venusian features. Specifically, by using cross-correlation, we correlate average profiles for terrestrial rifts (slow and fast, “ultra-slow,” incipient and inactive) and also hotspots (oceanic and continental) with those for venusian chasmata and regiones, to draw inferences as to the processes responsible for shaping Venus’ surface. Correlations tend to improve with faster spreading rates; Venus’ correlations rank considerably lower than terrestrial ones, suggesting that if chasmata are analogous to terrestrial spreading centers, then spreading on Venus barely attains ultra-slow rates. Individual features’ normalized average profiles are correlated with profiles of other such features to establish the degree of similarity, which in turn allows for the construction of a covariance matrix. Principal component analysis of this covariance matrix shows that Yellowstone more strongly resembles Atla, Beta and W. Eistla regiones than it does the terrestrial oceanic hotspots, and that venusian chasmata, especially Ganis, most closely resemble the ultra-slow spreading Arctic ridge.  相似文献   

19.
A model of the predawn bulge ionosphere composition and structure is constructed and compared with the ion mass spectrometer measurements from the Pioneer Venus Orbiter during orbits 117 and 120. Particular emphasis is given to the identification of the mass-2 ion which we find unequivocally due to D+ (and not H2+). The atmospheric D/H ratio of 1.4% and 2.5% is obtained at the homopause (~ 130 km) for the two orbits. The H2+ contribution to the mass-2 ion density is less than 10%, and the H2 mixing ratio must be <0.1 ppm at 130 km altitude. The He+ data require a downward He+ flux of ~2 × 107 cm?2 sec?1 in the predawn region which suggest that the light ions also flow across the terminator from day to night along with the observed O+ ion flow.  相似文献   

20.
A sidereal model for calculating the observational bias imposed on an assumed distribution of periods of rotation for the ultraviolet cloud markings on Venus has been investigated. The results are compared to the observed distribution. Observational constraints are varied in the model in order to determine the influence of each parameter. The observational bias is investigated for single stations and pairs of stations located 6 and 12hr apart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号