首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assuming that the surface topography of the Ovda and Thetis plateaus, and that of the saddle region between Thetis and Atla plateaus, is due to surface subsidence of oceanic-type thermal boundary layers, we calculated the temperature at 200 km beneath the plateaus to be about 1600 C, and that beneath the saddle region to be about 1400–1500 C. The total subsidence of Ovda plateau in the last 3/4 of its existence, i.e. between 200 km and 800 km off the postulated ridge axis, suggests that the plateau is probably a young feature, less than 40 m.y. old. The spreading plate models imply a half-spreading rate of 2.3–5.3 cm/yr for the plateaus and 2–2.8 cm/yr for the saddle region.  相似文献   

2.
Plasma and magnetic field measurements made onboard the Venus Express on June 1, 2006, are analyzed and compared with predictions of a global model. It is shown that in the orbit studied, the plasma and magnetic field observations obtained near the North Pole under solar minimum conditions were qualitatively and, in many cases also, quantitatively in agreement with the general picture obtained using a global numerical quasi-neutral hybrid model of the solar wind interaction (HYB-Venus). In instances where the orbit of Venus Express crossed a boundary referred to as the magnetic pileup boundary (MPB), field line tracing supports the suggestion that the MPB separates the region that is magnetically connected to the fluctuating magnetosheath field from a region that is magnetically connected to the induced magnetotail lobes.  相似文献   

3.
The magnetic field in the middle magnetosphere of Jupiter was suggested to be the planetary dipole field plus a perturbation field due to a current sheet (Smith et al, 1974). Since no data of the low energy plasma are available the existence of a plasma sheet could not be confirmed directly. In this paper we show how the plasma pressure and density-can be derived from the magnetic field in the framework of a self-consistent theory. For the magnetic field model proposed by Goertz et al. (1976c) we compute the isobars and isodensity lines and confirm the existence of a thin plasma sheet.  相似文献   

4.
In this paper we examine the wave properties of a hot plasma living in a Schwarzschild magnetosphere. The 3+1 GRMHD perturbation equations are formulated for this scenario. These equations are Fourier analyzed and then solved numerically to obtain the dispersion relations for a non-rotating, rotating non-magnetized and rotating magnetized plasma. The wave vector is evaluated, which is used to calculate the refractive index. These quantities are shown in graphs which are helpful to discuss the dispersive properties of the medium near the event horizon.  相似文献   

5.
We consider the electron—positron plasma generation processes in the magnetospheres of magnetars—neutron stars with strong surface magnetic fields, B ? 1014–1015 G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the \(P - \dot P\) diagram that defines the plasma generation threshold in a magnetar magnetosphere.  相似文献   

6.
The hydromagnetic Kelvin-Helmholtz (K-H) instability problem is studied for a three-layered system analytically by arriving at the marginal instability condition. As the magnetic field directions are taken to vary in the three regions, both the angle and finite thickness effects are seen on the instability criterion. When the relative flow speed of the plasmas on the two sides of the interfaces separating the inner and the surrounding layers is U < Uc, where Uc is the critical speed, the system is stable both for symmetric and asymmetric perturbations. However, unlike the case of the interface bounded by two semiinfinite media, Uc is no longer the minimum critical speed above which the system will be unstable for all wavenumbers; another critical speed U* > Uc is introduced due to the finiteness of the system. When Uc < U < U*, the instability can set in either through the symmetric or asymmetric mode, depending on the ratio of the plasma parameters and angle between the magnetic field directions across the boundaries. The instability arises for a finite range of wavenumbers, thus giving rise to the upper and lower cut-off frequencies for the spectra of hydromagnetic surface waves generated by the K-H instability mechanism. When U > U*, both the modes are unstable for short wavelengths. The results are finally used to explain some observational features of the dependence of hydromagnetic energy spectra in the magnetosphere on the interplanetary parameters.  相似文献   

7.
The impossibility is demonstrated of the limiting transition to a fluid at rest within an area, limited by a specific tangential discontinuity of the 1st, 2nd, or 3rd kind and described by the equations of ideal magnetic hydrodynamics with isotropic or anisotropic pressure. Within the framework of the concept of dynamic equilibrium plasma configuration, evaluations are obtained for the thicknesses of the layer of return flow, electrical field of convection in the magnetosphere and the jump of magnetic field at the magnetopause.  相似文献   

8.
It is shown that a strongly magnetized isothermal pair plasma near the surface of a pulsar supports low-frequency (in comparison to electron cyclotron frequency) toroidal electrostatic plasma modes in the equatorial region. Physically, the thermal pressure coupled with the magnetic pressure creates the low frequency oscillations which may grow for particular case of inhomogeneities of the equilibrium magnetic field and the pair plasma density.  相似文献   

9.
PROGNOZ-7 observations of intense “magnetosheath-like” plasma deep inside the high latitude boundary layer, the plasma mantle, indicates that solar wind plasma elements may occasionally penetrate the magnetopause and form high density regions in the plasma mantle. These “magnetosheath-like” regions are usually associated with strong flow of solar wind ions (e.g. H+ and He2+) and the presence of terrestrial ions (e.g. O+). The magnetosheath-like structures may roughly be classified as “newly injected” or “stagnant”. The newly injected structures have characteristics very similar to those found in the magnetosheath, i.e. strong antisunward flow and magnetosheath ion composition and density. The magnetic field characteristics may, however, differ considerably from those found further out in the magnetosheath. The “stagnant” structures are characterized by a reduced plasma flow, a lower density and a different ion composition as compared to that in the magnetosheath. In a few cases newly injected structures were even found in the innermost part of the mantle (i.e. forming a “boundary region” adjacent to the lobe). These cases were also associated with fairly strong fluxes of O+ ions in the outer mantle. Whilst the newly injected type of magnetosheath-like structure contained almost no O+ ions, the stagnant regions were intermixed by an appreciable amount of ionospheric ions. The newly injected and stagnant penetration regions had both in common a diamagnetic decrease of the ambient magnetic field. The newly injected structures, however, were also associated with a considerable reorientation of the magnetic field vector. A common feature for penetration regions well separated from the magnetopause is that they are mainly observed for a southward IMF. A third category of plasma mantle penetrated events, denoted “open magnetopause” events, usually occurred when the IMF was away and northward. Characteristics for these events were a smooth transition/rotation of the magnetic field vector near the magnetopause, and fairly high ion densities in the mantle and the transition region.  相似文献   

10.
We test a new emission mechanism in pulsar magnetospheres, eventually responsible in part for the high level of observed radio radiation. This is carried out by comparing the efficiency of the two-stream instability of Langmuir waves in a pulsar emission region, where the stationary and non-stationary characters of pair plasma outflows produced in the gap region are characterized by two different time-scales. On the shorter time-scale, the Ruderman &38; Sutherland 'sparking' phenomenon leads to the creation of pair plasma clouds, in motion along magnetic field lines, that contain particles with a large spectrum of momenta. The overlapping of particles with different energies produced in successive clouds results in an efficient 'two stream'-like instability. This effect is a consequence of the non-stationary character of the pair plasma produced in the gap region, just above the magnetic poles of the neutron star. On a long time-scale, resulting pair plasma outflows in pulsar magnetospheres can be treated as stationary. In this case, the instability which results from interaction between existing primary beam particles and the pair plasma is negligible, whereas the instability owing to interaction between electrons and positrons of the pair plasma itself, and more precisely to their relative drift motion along curved magnetic field lines, is effective. We derive characteristic features of the triggered instability, using specific distribution functions to describe either particles in the assembly of clouds or relative drifting of electrons and positrons in these same plasma clouds. Although linear and local, our treatment suggests that non-stationary effects may compete with, or even dominate over, drifting effects in parts of pulsar emission regions.  相似文献   

11.
12.
We present a numerical model in which a cold pair plasma is ejected with relativistic speed through a polar cap region and flows almost radially outside the light cylinder. Stationary axisymmetric structures of electromagnetic fields and plasma flows are self-consistently calculated. In our model, motions of positively and negatively charged particles are assumed to be determined by electromagnetic forces and inertial terms, without pair creation and annihilation or radiation loss. The global electromagnetic fields are calculated by the Maxwell's equations for the plasma density and velocity, without using ideal magnetohydrodynamic condition. Numerical result demonstrates the acceleration and deceleration of plasma due to parallel component of the electric fields. Numerical model is successfully constructed for weak magnetic fields or highly relativistic fluid velocity, i.e. kinetic energy dominated outflow. It is found that appropriate choices of boundary conditions and plasma injection model at the polar cap should be explored in order to extend present method to more realistic pulsar magnetosphere, in which the Poynting flux is dominated.  相似文献   

13.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles.  相似文献   

14.
A theoretical study is made on the generation mechanism of electrostatic Bernstein mode wave in the presence of electromagnetic Kinetic Alfven wave turbulence in magnetized inhomogeneous plasma on the basis of plasma-maser interaction. It is shown that a test high-frequency electrostatic Bernstein mode wave is unstable in the presence of low-frequency Kinetic Alfven wave turbulence. Because of the universal existence of the Kinetic Alfven waves in large-scale plasmas, the result has potential importance in space and astrophysical radiation process. The growth rate of the test high-frequency Bernstein mode wave is obtained with the involvement of spatial density gradient parameter. A comparative study on the role of density gradient in the generation of Bernstein mode on the basis of plasma-maser effect is presented.  相似文献   

15.
The problem of effective transform of Poynting flux energy into the kinetic energy of relativistic plasma outflow in a magnetosphere is considered. In this article we present an example of such acceleration. In order to perform it, we use the approach of ideal axisymmetric magnetohydrodynamics (MHD). For highly magnetized plasma outflow we show that a linear growth of Lorentz factor with a cylindrical distance from the rotational axis is a general result for any field configuration in the sub-magnetosonic flow. In the far region the full magnetohydrodynamics problem for one-dimensional flow is considered. It turns out that the effective plasma outflow acceleration is possible in the paraboloidal magnetic field. It is shown that such an acceleration is due to the drift of charged particles in the crossed electric and magnetic field. The clear explanation of the absence of acceleration in the monopole magnetic field if given.   相似文献   

16.
Starting from a set of general equations governing the dynamics of a magneto-fluid around a compact object on curved space time, a fairly simple analytical solution for a test disc having only azimuthal component of velocity has been obtained. The electromagnetic field associated has a modified dipole configuration which admits a reasonable pressure profile for the case of fully relativistic treatment of Keplerian type of velocity distribution  相似文献   

17.
The nature of convective instability has been investigated for an electromagnetic wave, either right circularly polarised or left circularly polarised, propagating along a magnetic line of force in a plasma whose distribution function exhibits a temperature anisotropy in the hot species, a loss cone structure and a beam of cold electrons or ions travelling along the line of force with velocity V1. Detailed numerical calculations have been made using a computer for the growth and decay of the wave for different values of the anisotropy ratio T/T = δ of the perpendicular and parallel temperatures, the McIlwain parameter L, the loss cone index j, velocity V1 of the streaming particle and the particle density ratio ε. The ranges of values of ε and δ for which the wave becomes unstable have been studied in detail. It is found that wave propagation shows no dependence on the loss cone index but shows very strong dependence on the temperature anisotropy δ.  相似文献   

18.
An estimate is derived of the solar gravitational torque on the thermal atmospheric tide of Venus. The value obtained is compared with the computed torque on the body of the planet itself caused by viscous coupling between it and the superrotating atmosphere. The comparison suggests that the solar thermal torque and the viscous torque are effective in the maintenance of the four-day superrotation of the Venusian atmosphere.UMIST, Department of Physics  相似文献   

19.
It is shown that Birkeland current and vorticity in the magnetosphere are intimately related, suggesting the importance of taking explicit account of vorticity, particularly velocity shear, when considering magnetospheric motions. An equation of motion for the magnetosphere coupled to the ionosphere is derived. It is suggested that experience with MHD fluids generally might fruitfully be brought to bear on certain problems in the magnetosphere to answer the question, not ‘why a sheet of Birkeland current,’ but rather ‘why a localised velocity shear.’  相似文献   

20.
J.L. Fox 《Icarus》1982,51(2):248-260
Reactions of metastable species are important in determining the densities of minor ions in the Venusian ionosphere. Calculations are carried out in which the coupled continuity and momentum equations are solved for twelve ions and four neutral species in the dayside ionosphere, including O+(2D), O+(2P), N(2D), and N(2P). Altitude profiles of these metastable species are presented. Their reactions are shown to be a significant source of several minor ions, especially N2+, CO+, and N+. The discrepancies which existed between model and measured densities of these ions are resolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号