首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FRESIP (FRequency of Earth-Sized Inner Planets) is a mission designed to detect and characterize Earth-sizes planets around solar-like stars. The sizes of the planets are determined from the decrease in light from a star that occurs during planetary transits, while the orbital period is determined from the repeatability of the transits. Measurements of these parameters can be compared to theories that predict the spacing of planets, their distribution of size with orbital distance, and the variation of these quantities with stellar type and multiplicity. Because thousands of stars must be continually monitored to detect the transits, much information on the stars can be obtained on their rotation rates and activity cycles. Observations of p-mode oscillations also provide information on their age and composition. These goals are accomplished by continuously and simultaneously monitoring 500 solar-like stars for evidence of brightness changes caused by Earth-sized or larger planetary transits. To obtain the high precision needed to find planets as small as the Earth and Venus around solar-like stars, a wide field of view Schmidt telescope with an array of CCD detectors at its focal plane must be located outside of the Earth's at mosphere. SMM (Solar Maximum Mission) observations of the low-level variability of the Sun (1:100,000) on the time scales of a transit (4 to 16 hours), and our laboratory measurements of the photometric precision of charge-coupled devices (1:100,000) show that the detection of planets as small as the Earth is practical. The probability for detecting transits is quite favorable for planets in inner orbits. If other planetary systems are similar to our own, then approximately 1% of those systems will show transits resulting in the discovery of 50 planetary systems in or near the habitable zone of solar-like stars.  相似文献   

2.
The disciplines of asteroseismology and extrasolar planet science overlap methodically in the branch of high‐precision photometric time series observations. Light curves are, amongst others, useful to measure intrinsic stellar variability due to oscillations, as well as to discover and characterize those extrasolar planets that transit in front of their host stars, periodically causing shallow dips in the observed brightness. Both fields ultimately derive fundamental parameters of stellar and planetary objects, allowing to study for example the physics of various classes of pulsating stars, or the variety of planetary systems, in the overall context of stellar and planetary system formation and evolution. Both methods typically also require extensive spectroscopic follow‐up to fully explore the dynamic characteristics of the processes under investigation. In particularly interesting cases, a combination of observed pulsations and signatures of a planet allows to characterize a system's components to a very high degree of completeness by combining complementary information. The planning of the relevant space missions has consequently converged with respect to science cases, where at the outset there was primarily a coincidence in instrumentation and techniques. Whether space‐ or ground‐based, a specific type of stellar pulsations can themselves be used in an innovative way to search for extrasolar planets. Results from this additional method at the interface of stellar pulsation studies and exoplanet hunts in a beyond‐mainstream area are presented (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The detection of extrasolar planets by measuring a photometric drop in the stellar brightness due to a planetary transit can be statistically improved by observing eclipsing binary systems and photometrically improved by observing small component systems. In particular the system CM Draconis, with two dM4 components, would allow the detection of extrasolar planets in the size range of Earth-to-Neptune requiring a ground-based photometric precision of about 0.08% to 1.1% (photometric precision of about 0.3% is routinely achievable with 1-meter class telescopes at the magnitude of CM Draconis, 11.07 inR-filter). In addition, the transit of extrasolar planets in a binary star system provides a unique, quasi-periodic signal that can be cross-correlated with the observational data to detect sub-noise signals. We examine the importance of making such observations to an understanding of the formation and evolution of terrestrial-type planets in main-sequence star systems. Terrestrial planets could have formed with substancially shorter periods in this lower luminosity system, for example, and might be expected to have accreted essentially in the binary orbital plane (however, non-coplanar planets may also eventually be detectable due to precession). We also report on a network of medium-sized telescopes at varying longitudes that have been organized to provide such constraints on terrestrial-planet formation processes and discuss the extention of near-term observations to other possible binary systems, as well. Finally, we discuss a more speculative, future observation that could be performed on the CM Draconis system that would be of exobiological as well as astrophysical interest.  相似文献   

4.
The large stellar/planetary flux ratio (>106) and small angular separation (0.1 arcsec when observed from 10 parsecs) make it difficult to study Earthlike extrasolar planets. Hybrid coronographs with apodized masks and nulling by Earth based interferometric techniques could reduce the flux ratio by 3 orders of magnitude. Further reduction of starlight is possible with frequency filters. Due to large (upto 30 km/s) differences in radial velocities the specific spectral line for a particular molecule will be Doppler shifted by different amounts depending on from where, the star or the planet, the emission originates. The stellar spectrum itself could be used as a dynamic reference to determine the differential Doppler shift and define the frequency search space for the sought after planetary spectral line. The Differential Radial Velocity Spectrometer (DRVS) could use a heterodyne receiver with steep skirted filters and a laser local oscillator tracking the stellar spectrum. Several planetary spectral line windows should be searched and correlation/code gain techniques used to enhance detection capabilities.  相似文献   

5.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

6.
Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star–planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from \(0.6~M_\odot \) to \(1.2~M_\odot \)) where we compute the simultaneous evolution of the star’s structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.  相似文献   

7.
We describe a method of estimating the abundance of short-period extra-solar planets based on the results of a photometric survey for planetary transits. We apply the method to a 21-night survey with the 2.5-m Isaac Newton Telescope of ∼32 000 stars in a ∼0.5 × 0.5 deg2 field including the open cluster NGC 7789. From the colour–magnitude diagram, we estimate the mass and radius of each star by comparison with the cluster main sequence. We search for injected synthetic transits throughout the light curve of each star in order to determine their recovery rate, and thus calculate the expected number of transit detections and false alarms in the survey. We take proper account of the photometric accuracy, time sampling of the observations and criteria (signal-to-noise ratio and number of transits) adopted for transit detection. Assuming that none of the transit candidates found in the survey will be confirmed as real planets, we place conservative upper limits on the abundance of planets as a function of planet radius, orbital period and spectral type.  相似文献   

8.
Jenkins JM  Doyle LR  Cullers DK 《Icarus》1996,119(2):244-260
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.  相似文献   

9.
Of the known transiting extrasolar planets, a few have been detected through photometric follow-up observations of radial velocity planets. Perhaps the best known of these is the transiting exoplanet HD 209458b. For hot Jupiters (periods less than ∼5 d), the a priori information that 10 per cent of these planets will transit their parent star due to the geometric transit probability leads to an estimate of the expected transit yields from radial velocity surveys. The radial velocity information can be used to construct an effective photometric follow-up strategy which will provide optimal detection of possible transits. Since the planet-harbouring stars are already known in this case, one is only limited by the photometric precision achievable by the chosen telescope/instrument. The radial velocity modelling code presented here automatically produces a transit ephemeris for each planet data set fitted by the program. Since the transit duration is brief compared with the fitted period, we calculate the maximum window for obtaining photometric transit observations after the radial velocity data have been obtained, generalizing for eccentric orbits. We discuss a typically employed survey strategy which may contribute to a possible radial velocity bias against detection of the very hot Jupiters which have dominated the transit discoveries. Finally, we describe how these methods can be applied to current and future radial velocity surveys.  相似文献   

10.
Previous studies have shown that extrasolar Earth-like planets in close-in habitable zones around M-stars are weakly protected against galactic cosmic rays (GCRs), leading to a strongly increased particle flux to the top of the planetary atmosphere. Two main effects were held responsible for the weak shielding of such an exoplanet: (a) For a close-in planet, the planetary magnetic moment is strongly reduced by tidal locking. Therefore, such a close-in extrasolar planet is not protected by an extended magnetosphere. (b) The small orbital distance of the planet exposes it to a much denser stellar wind than that prevailing at larger orbital distances. This dense stellar wind leads to additional compression of the magnetosphere, which can further reduce the shielding efficiency against GCRs. In this work, we analyse and compare the effect of (a) and (b), showing that the stellar wind variation with orbital distance has little influence on the cosmic ray shielding. Instead, the weak shielding of M star planets can be attributed to their small magnetic moment. We further analyse how the planetary mass and composition influence the planetary magnetic moment, and thus modify the cosmic ray shielding efficiency. We show that more massive planets are not necessarily better protected against galactic cosmic rays, but that the planetary bulk composition can play an important role.  相似文献   

11.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

12.
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularization, synchronization and orbital decay by exchange of angular moment. Evidence for tidal circularization in close-in giant planet is well known. Here, we review the evidence for excess rotation of the parent stars due to the pull of tidal forces towards spin-orbit synchronization. We find suggestive empirical evidence for such a process in the present sample of transiting planetary systems. The corresponding angular momentum exchange would imply that some planets have spiralled towards their star by substantial amounts since the dissipation of the protoplanetary disc. We suggest that this could quantitatively account for the observed mass–period relation of close-in gas giants. We discuss how this scenario can be further tested and point out some consequences for theoretical studies of tidal interactions and for the detection and confirmation of transiting planets from radial velocity and photometric surveys.  相似文献   

13.
Habitable zones around main sequence stars   总被引:1,自引:0,他引:1  
Kasting JF  Whitmire DP  Reynolds RT 《Icarus》1993,101(1):108-128
A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to remain habitable and on whether a planet that is initially frozen can be thawed by modest increases in stellar luminosity. For a specified period of habitability, CHZs around K and M stars are wider (in log distance) than for our Sun because these stars evolve more slowly. Planets orbiting late K stars and M stars may not be habitable, however, b ecause they can become trapped in synchronous rotation as a consequence of tidal damping. F stars have narrower (log distance) CHZ's than our Sun because they evolve more rapidly. Our results suggest that mid-to-early K stars should be considered along with G stars as optimal candidates in the search for extraterrestrial life.  相似文献   

14.
The space mission COROT (to be launched in 2002) will continuously monitor the flux of a number of stars during 150 days periods with a very high photometric accuracy. One of its objectives is the detection of extra-solar planets by looking for their transits in front of the disk of several tens thousand stars. COROT accommodates a 25 cm telescope with low straylight, and 4 2048×2048 CCDs, 2 of which monitoring 5000 to 12000 stars simultaneously up to mv= 16.5. The stability and noise performances should make easy the detection of Jupiter-like planets and possible the detection of Earth-like planets with radius 1.5R. Under study is a dispersive system that will allow to retrieve some chromatic information : this could be essential to discriminate actual transit events against stellar fluctuations that would mimic a transit and to identify properly the events occurring in binary stars. The mission, the instrument and the results of simulations are presented, together with a discussion on the number of expected events : the multiple ones with a short orbital period signature, or the single or double events identified by their (a)chromatic signature. The later ones may lead to the discovery of planets in the habitable zone.  相似文献   

15.
Existing instruments are unable to detect planets about stars other than the Sun but such detection would be important for the theory of origin of our solar system and in the search for extraterrestrial intelligence. Infrared offers an advantage of about 105 over visible light as regards the ratio of power received from star and planet. Infrared interferometry from Earth orbit would allow discrimination against the stellar infrared by the placement of an interference null on the star and a spinning infrared interferometer would modulate the planetary emission to permit extraction by synchronous detection from the background level. The limit to sensitivity will be set by thermal emission from the zodiacal light particles near the Earth's orbit unless the interferometer is launched out of the ecliptic or out to the orbit of Jupiter, in which case instrumental limitations will dominate. Technological developments in several fields will be required as also with astrometry, spectroscopic radial velocity measurement, and direct photography from orbit, three approaches with which infrared interferometry should be carefully compared.  相似文献   

16.
We investigate the geometry concerning the photometric method of extrasolar planet detection, i.e., the detection of dimunition of a parent star's brightness during a planetary transit. Under the assumption that planetary orbital inclinations can be defined by a Gaussian with a of 10° centered on the parent star's equatorial plane, Monte Carlo simulations suggest that for a given star observed at an inclination of exactly 90°, the probability of at least one Earth-sized or larger planet being suitably placed for transits is approximately 4%. This probability drops to 3% for a star observed at an inclination of 80°, and is still 0.5% for a star observed at an inclination of 60°. If one can select 100 stars with a pre-determined inclination 80°, the probability of at least one planet being suitably configured for transits is 95%. The majority of transit events are due to planets in small-a orbits similar to the Earth and Venus; thus, the photometric method in principle is the method best suited for the detection of Earthlike planets.The photometric method also allows for testing whether or not planets can exist within binary systems. This can be done by selecting binary systems observed at high orbital inclinations, both eclipsing binaries and wider visual binaries. For a real-world example, we look at the Centauri system (i = 79°.2). If we assume that the equatorial planes of both components coincide with the system's orbital plane, Monte Carlo simulations suggest that the probability of at least one planet (of either component) being suitably configured for transits is approximately 8%.In conclusion, we present a non-exhaustive list of solar-type stars, both single and within binary systems, which exhibit a high equatorial inclination. These objects may be considered as preliminary candidates for planetary searches via the photometric method.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

17.
The Kepler Mission is a photometric space mission that will continuously observe a single 100 square degree field of view (FOV) of the sky of more than 100,000 stars in the Cygnus-Lyra region for four or more years with a precision of 14 parts per million (ppm) for a 6.5 hour integration including shot noise for a twelfth magnitude star. The primary goal of the mission is to detect Earth-size planets in the habitable zone of solar-like stars. In the process, many eclipsing binaries (EB) will also be detected. Prior to launch, the stellar characteristics will have been determined for all the stars in the FOV with K<14.5. As part of the verification process, stars with transits (about 5%) will need to have follow-up radial velocity observations performed to determine the component masses and thereby separate grazing eclipses caused by stellar companions from transits caused by planets. The result will be a rich database on EBs. The community will have access to the archive for uses such as for EB modeling of the high-precision light curves. A guest observer program is also planned for objects not already on the target list.  相似文献   

18.
David C. Black 《Icarus》1980,43(3):293-301
There is currently no unambiguous observational evidence for the existence of other planetary systems. One possible way to detect and study such systems is infrared observations of continuum blackbody radiation from planets revolving around other stars. It is shown that the effective temperature of large planets revolving around mid- to-late-spectral-type main-sequence stars is set by energy sources internal to the planet rather than by equilibrium with the radiation field of the central star, making them easier to detect than had been previously thought. Consideration is given to the two major observational constraints on detecting planetary companions to nearby stars, namely, angular resolution and sensitivity. A comparison is made between the performance of an ambient (T ~ 200°K), single-aperture telescope and a cooled interferometer. In each case the required aperture (baseline) is large (in the 10-m class), but consistent with Shuttle launch capability.  相似文献   

19.
Planets which are old and close to their parent stars are considered as reflecting planets because their intrinsic temperature is extremely low but they are heated strongly by the impinging stellar radiation and hence radiation of such planets are the reflected star light that is governed by the stellar radiation, orbital distance and albedo of the planet. These planets cannot be resolved from the host stars. The second kind of exoplanets are those which are very young and hence they have high intrinsic temperature. They are far away from their star and so they can be resolved by blocking the star-light. It is now realized that radiation of such planets are linearly polarized due to atmospheric scattering and polarization can determine various physical properties including the mass of such directly detected self-luminous exoplanets. It is suggested that a spectropolarimeter of even low spectral resolution and with a capacity to record linear polarization of 0.5–1% at the thirty-meter telescope would immensely help in understanding the atmosphere, especially the cloud chemistry of the self-luminous and resolvable exoplanets.  相似文献   

20.
The precise measurement of variations in stellar radial velocities provides one of several promising methods of surveying a large sample of nearby solar type stars to detect planetary systems in orbit around them. The McDonald Observatory Planetary Search (MOPS) was started in 1987 September with the goal of detecting other nearby planetary systems. A stabilized I2 gas absorption cell placed in front of the entrance slit to the McDonald Observatory 2.7 m telescope coudé spectrograph serves as the velocity metric. With this I2 cell we can achieve radial velocity measurement precision better than 10 m s–1 in an individual measurement. At this level we can detect a Jupiter-like planet around a solar-type star, and have some hope of detecting Saturn-like planets in a long-term survey. The detectability of planets is ultimately limited by stellar pulsation modes and photospheric motions. Monthly MOPS observing runs allow us to obtain at least 5 independent observations per year of the 33 solar-type (F5-K7) stars on our observing list. We present representative results from the first five years of the survey.Paper presented at the Conference onPlanetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号