首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Observations of tilts of spectral lines in the spectrum of Uranus and Neptune yield the following rotational periods: “Uranus,” 24 ± 3 hr; “Neptune,” 22 ± 4 hr. Neptune is confirmed to rotate in a direct sense. The position angle of the pole of Uranus, projected onto the plane of the sky, is found to be 283 ± 4°. The value for Neptune is 32 ± 11°. These results agree with the direction of the pole of Uranus inferred from the common plane of its four brightest satellites and with the direction of the pole of Neptune as inferred from the precession of Triton's orbit. The rotational period of Uranus is found to be consistent with modern values of its optical and dynamical oblateness and the theory of solid-body rotation with hydrostatic equilibrium. This is barely the case for the period derived for Neptune and we suspect that future observations made under better seeing conditions may lead to a shorter rotation period between 15 and 18 hr. Because of a substantial difference between our results and those of earlier spectroscopic and photometric investigations we include an assessment of several previously published photometric studies and a new reduction of the original Lowell and Slipher spectroscopic plates of Uranus [Lowell Obs. Bull. 2, 17–18, 19–20 (1912)]. The early visual photometry of Campbell (Uranus) and Hall (Neptune) is found to be more satisfactorily accounted for by periods of 21.6 and 23.1 hr, respectively, than by the periods originally suggested by the observers. Our reduction of the Lowell and Slipher Uranus plates yields a period near 33 hr uncorrected for seeing. This value is consistent with the results based on the 4-m echelle date.  相似文献   

3.
Plausible models for the atmospheres of Uranus and Neptune are reviewed. Current ideas favor the presence of massive atmospheres above solid cores. Observations of Uranus imply the presence of a visible cloud layer (probably composed of solid methane) beneath about 100 km amagats of hydrogen. A number of other cloud layers far below this upper layer are also possible. However, before any of these conclusions can be considered firm, a number of further crucial observations are required.  相似文献   

4.
Stephen R. Kane 《Icarus》2011,214(1):327-333
With more than 15 years since the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the Solar System giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogs around solar-type stars.  相似文献   

5.
We present a series of models of Uranus and Neptune in which the relative amounts of (1) rock, (2) ices, and (3) hydrogen and helium are allowed to vary. By fitting the density and the gravitational quadruppole moment, the model composition can be determined. Because of the ambiguity in the rotation periods of these planets, several possible models are presented and discussed.  相似文献   

6.
7.
We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ∼35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N-body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ∼27 AU and an eccentricity of ∼0.3, and that subsequently Neptune's eccentricity damped in ∼1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively: (1) the co-existence of resonant and non-resonant populations, (2) the eccentricity-inclination distribution of the Plutinos, (3) the peculiar semi-major axis—eccentricity distribution in the classical belt, (4) the outer edge at the 1:2 mean motion resonance with Neptune, (5) the bi-modal inclination distribution of the classical population, (6) the correlations between inclination and physical properties in the classical Kuiper belt, and (7) the existence of the so-called extended scattered disk. Nevertheless, we observe in the simulations a deficit of nearly-circular objects in the classical Kuiper belt.  相似文献   

8.
M. Podolak  R. Young  R. Reynolds 《Icarus》1985,63(2):266-271
The difference between the interior structures of Uranus and Neptune is presented, based on models which fit the observed mass, radius, and gravitational moments for the assumed rotation periods of these planets. If Uranus and Neptune are assumed to be as similar in internal structure as they are in mass and radius, the rotation period for Neptune must be shorter than that for Uranus. It is suggested that the true rotation period is given by Neptune's oblateness, while the photometric period corresponds to the motion of Rossby waves in the upper atmosphere.  相似文献   

9.
S.J. Weidenschilling 《Icarus》2011,214(2):671-684
The present size frequency distribution (SFD) of bodies in the asteroid belt appears to have preserved some record of the primordial population, with an excess of bodies of diameter D ∼ 100 km relative to a simple power law. The survival of Vesta’s basaltic crust also implies that the early SFD had a shallow slope in the range ∼10-100 km. (Morbidelli, A., Bottke, W.F., Nesvorny, D., Levison, H.F. [2009]. Icarus 204, 558-573) were unable to produce these features by accretion from an initial population of km-sized planetesimals. They concluded that bodies with sizes in the range ∼100-1000 km and a SFD similar to the current population were produced directly from solid particles of sub-meter scale, without experiencing accretion through intermediate sizes. We present results of new accretion simulations in the primordial asteroid region. The requisite SFD can be produced from an initial population of planetesimals of sizes ?0.1 km, smaller than the usual assumption of km-sized bodies. The bump at D ∼ 100 km is produced by a transition from dispersion-dominated runaway growth to a regime dominated by Keplerian shear, before the formation of large protoplanetary embryos. Thus, accretion of the asteroids from an initial population of small (sub-km) planetesimals cannot be ruled out.  相似文献   

10.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

11.
The observational data of Algols have been examined in order to clarify the implication of the assumption concerning the orbital angular momentum loss on their orbital period change. It is found that the agreement between theory and observational data of Algols is much better when a nonconservative approach of evolution is adopted.  相似文献   

12.
The latitudinal and seasonal variation of the direct solar radiation incident at the top of the atmosphere of Uranus and Neptune has been recalculated by use of updated values for the period of axial rotation and the oblateness. Values for the solar radiation are given in Watt per square meter instead of the unit used in earlier papers (calories per square centimeter per planetary day). The solar radiation averaged over a season and a year as a function of planetocentric latitude has also been reviewed. In addition, attention is made to the ratio of the solar radiation incident on an oblate planet to that incident on a spherical planet.  相似文献   

13.
We present 20-μm photometry of Uranus and Neptune which confirms the presence of a temperature inversion in the lower stratospheres in both planets. We find the brightness temperature difference between 17.8 and 19.6 μm to be 0.8 ± 0.5°K for Uranus and 1.8 ± 0.6°K for Neptune. These results indicate that the temperature inversions on both planets are weaker than previously thought. Comparison to model atmospheres by J. Appleby [Ph.D. thesis, SUNY at Stony Brook 1980] indicates that the temperature inversions can be understood as arising from heating by the absorption of sunlight by CH4 and aerosols. However, the stratospheric CH4 mixing ratio on Neptune must be higher than that at the temperature minimum.  相似文献   

14.
The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. [2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. [2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. [2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. [1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. [1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. [1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. [2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.  相似文献   

15.
Consideration of the basic physics involved in the structure of the object are used to obtain relationships for the radius, period, angular momentum, etc. of a typical asteroid. The mass-angular momentum relation for asteroids would tend to favour the fragmentation hypothesis.  相似文献   

16.
We introduce a general mathematical framework to model the internal transport of angular momentum in a star hosting a close-in planetary/stellar companion. By assuming that the tidal and rotational distortions are small and that the deposit/extraction of angular momentum induced by stellar winds and tidal torques are redistributed solely by an effective eddy-viscosity that depends on the radial coordinate, we can formulate the model in a completely analytic way. It allows us to compute simultaneously the evolution of the orbit of the companion and of the spin and the radial differential rotation of the star. An illustrative application to the case of an F-type main-sequence star hosting a hot Jupiter is presented. The general relevance of our model to test more sophisticated numerical dynamical models and to study the internal rotation profile of exoplanet hosts, submitted to the combined effects of tides and stellar winds, by means of asteroseismology are discussed.  相似文献   

17.
Using mathematical formalism borrowed from dynamical systems theory, a complete analytical investigation of the critical behaviour of stationary flows in low angular momentum axisymmetric black hole accretion, provides significant insight about the nature of the phase trajectories corresponding to transonic accretion in the steady state, without taking recourse to any explicit numerical method commonly reported in the literature on multi-transonic black hole accretion discs and related astrophysical phenomena. Investigation of an accretion process around a non-rotating black hole, forming different geometrical configurations of the flow structure under the influence of various pseudo-Schwarzschild potentials, reveals that the general profile of the parameter space divisions describing multi-critical accretion, is roughly equivalent for various flow geometries. However, a mere variation of the polytropic index of the flow cannot map a critical solution from one flow geometry to another, since the numerical domain of the parameter space responsible for producing multi-critical accretion does not undergo a continuous transformation in multi-dimensional parameter space. The stationary configuration used to demonstrate the aforementioned findings is shown to be stable under time-dependent linearised perturbations for all kinds of flow geometries, driven by any pseudo-Schwarzschild potential, and using a standard equation of state. Finally, the structure of the acoustic metric corresponding to the propagation of the linear perturbation is discussed for various flow geometries used.  相似文献   

18.
We study the nature of non-axisymmetric dynamical instabilities in differentially rotating stars with both linear eigenmode analysis and hydrodynamic simulations in Newtonian gravity. We especially investigate the following three types of instability; the one-armed spiral instability, the low   T /| W |  bar instability, and the high   T /| W |  bar instability, where T is the rotational kinetic energy and W is the gravitational potential energy. The nature of the dynamical instabilities is clarified by using a canonical angular momentum as a diagnostic. We find that the one-armed spiral and the low   T /| W |  bar instabilities occur around the corotation radius, and they grow through the inflow of canonical angular momentum around the corotation radius. The result is a clear contrast to that of a classical dynamical bar instability in high   T /| W |  . We also discuss the feature of gravitational waves generated from these three types of instability.  相似文献   

19.
The secular evolution of the purely general relativistic low angular momentum accretion flow around a spinning black hole is shown to exhibit hysteresis effects. This confirms that a stationary shock is an integral part of such an accretion disc in the Kerr metric. The equations describing the space gradient of the dynamical flow velocity of the accreting matter have been shown to be equivalent to a first order autonomous dynamical systems. Fixed point analysis ensures that such flow must be multi-transonic for certain astrophysically relevant initial boundary conditions. Contrary to the existing consensus in the literature, the critical points and the sonic points are proved not to be isomorphic in general, they can form in a completely different length scales. Physically acceptable global transonic solutions must produce odd number of critical points. Homoclinic orbits for the flow possessing multiple critical points select the critical point with the higher entropy accretion rate, confirming that the entropy accretion rate is the degeneracy removing agent in the system. However, heteroclinic orbits are also observed for some special situation, where both the saddle type critical points of the flow configuration possesses identical entropy accretion rate. Topologies with heteroclinic orbits are thus the only allowed non-removable degenerate solutions for accretion flow with multiple critical points, and are shown to be structurally unstable. Depending on suitable initial boundary conditions, a homoclinic trajectory can be combined with a standard non-homoclinic orbit through an energy preserving Rankine-Hugoniot type of stationary shock, and multi-critical accretion flow then becomes truly multi-transonic. An effective Lyapunov index has been proposed to analytically confirm why certain class of transonic flow cannot accommodate shock solutions even if it produces multiple critical points.  相似文献   

20.
R. Smoluchowski  M. Torbett 《Icarus》1981,48(1):146-148
It has been shown by us previously that a hydromagnetic dynamo can operate in the core of Uranus but probably not on Neptune. A similar analysis is made for the “icy” liquid mantles of both planets. It is concluded that pressure ionization and the associated increased conductivity of water is probably not enough to satisfy the necessary conditions for a dynamo on Uranus and that it is marginal for Neptune. On the other hand the expected presence of metallic water in a thick layer around the core of Neptune makes the operation of a dynamo on this planet plausible. A similar layer on Uranus might be too thin to play the same role. It appears that if a magnetic field is indeed present on Uranus it is probably generated in the core of the planet, while on Neptune it is more likely operating in the icy mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号