首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual and infrared observations were made of Amor asteroid 1982 DV during its discovery apparition. Broadband visual and near-infrared photometry shows that it is an S-class asteroid. Narrowband spectrophotometry shows an absorption feature due to olivine or pyroxene or both centered at 0.93 μm. Applying a nonrotating thermal model to 10-μm photometry, the geometric albedo is calculated to be approximately 0.27. The geometric albedo for a slowly rotating, rocky surface was calculated for 1 night to be 0.15, consistent with S-class asteroid albedos. Thus, 1982 DV is either one of the most reflective S-class asteroids known, or a significant amount of bare rock is exposed on the asteroid's surface. For the nonrotating model, ellipsoidal dimensions for 1982 DV are 3.5 × 1.4 × 1.4 km.  相似文献   

2.
Time-series photometry of the Hipparcos variable stars HD 199434 and 21190 is reported. Both stars are pulsators of the δ Scuti type. Reclassifications of the MK types of the stars, based on new spectrograms, are given. HD 21190 is found to be F2III SrEuSi:, making it the most evolved Ap star known. Its Strömgren photometric indices support the peculiar spectral type. It is also one of the most evolved δ Scuti stars known. Its combined Ap– δ Scuti nature makes it an important test of models of pulsation in peculiar stars recently developed by Turcotte et al., although it is more extreme than any model they examined. Physical parameters of both stars are estimated from Strömgren and H β photometry, and Hipparcos absolute magnitudes. We attempt mode identifications based on amplitude ratios and phase differences from our photometry. The dominant pulsation of HD 21190 may be an overtone radial mode. The model fits for HD 199434 are even less satisfactory, but favour an ℓ=2 mode. Given the good quality and wavelength coverage of our data, the poor results from the application of the photometric theory of mode identification may call into question the use of that technique.  相似文献   

3.
Abstract— Roosevelt County (RC) 075 was recovered in 1990 as a single 258-gram stone. Classification of this meteorite is complicated by its highly unequilibrated nature and its severe terrestrial weathering, but we favor H classification. This is supported by O isotopes and estimates of the original Fe, Ni metal content. The O isotopic composition is similar to that of a number of reduced ordinary chondrites (e.g., Cerro los Calvos, Willaroy), although RC 075 exhibits no evidence of reduced mineral compositions. Chondrule diameters are consistent with classification as an L chondrite, but large uncertainties in chondrule diameters of RC 075 and poorly constrained means of H, L and LL chondrites prevent use of this parameter for reliable classification. Other parameters are compromised by severe weathering (e.g., siderophile element abundances) or unsuitable for discrimination between unequilibrated H, L and LL chondrites (e.g., Co in kamacite, δ13C). Petrologic subtype 3.2± 0.1 is suggested by the degree of olivine heterogeneity, the compositions of chondrule olivines, the thermoluminescence sensitivity, the abundances and types of chondrules mapped on cathodoluminescence mosaics, and the amount of presolar SiC. The meteorite is very weakly shocked (S2), with some chondrules essentially unshocked and, thus, is classified as an H3.2(S2) chondrite. Weathering is evident by a LREE enrichment due to clay contamination, reduced levels of many siderophile elements, the almost total loss of Fe, Ni metal and troilite, and the reduced concentrations of noble gases. Some components of the meteorite (e.g., type IA chondrules, SiC) appear to preserve their nebular states, with little modification from thermal metamorphism. We conclude that RC 075 is the most unequilibrated H chondrite yet recovered and may provide additional insights into the origin of primitive materials in the solar nebula.  相似文献   

4.
We examine the distributions of 2888 numbered minor planets over orbital inclination, eccentricity, and semimajor axis, and define 19 zones which we believe adequately to isolate the selection biases in survey programs of the physical properties of minor planets. Six numbered asteroids have exceptional orbits and fall into no zone. We also call attention to rather sharp upper limits, which become increasingly stringent at larger heliocentric distances, on orbital inclinations and eccentricity.  相似文献   

5.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events.  相似文献   

6.
I present new maps, photomosaics and geological interpretations of asteroid 951 Gaspra. Facets and limb concavities suggest a long history of large impacts producing 5 to 7 km diameter craters. Craters 1 to 4 km in diameter date the last facet-forming impact, though it is not clear which facet this formed. These craters are more numerous than previously thought because much of the area seen at high resolution seems to be depleted in these larger craters. Craters in that area probably date the last body-jolting impact. Linear features, probably the surface expressions of deep fractures, form at least two groups with different trends and probably different ages. Previously noted fresh and spectrally distinct materials are concentrated on ridges. One or two dark markings occur on a steep slope seen at high sun. Smooth materials, probably consisting of thicker or more mobile regolith than elsewhere, occur on steep slopes, usually on rotational leading surfaces.  相似文献   

7.
The fossilized size distribution of the main asteroid belt   总被引:1,自引:0,他引:1  
Planet formation models suggest the primordial main belt experienced a short but intense period of collisional evolution shortly after the formation of planetary embryos. This period is believed to have lasted until Jupiter reached its full size, when dynamical processes (e.g., sweeping resonances, excitation via planetary embryos) ejected most planetesimals from the main belt zone. The few planetesimals left behind continued to undergo comminution at a reduced rate until the present day. We investigated how this scenario affects the main belt size distribution over Solar System history using a collisional evolution model (CoEM) that accounts for these events. CoEM does not explicitly include results from dynamical models, but instead treats the unknown size of the primordial main belt and the nature/timing of its dynamical depletion using innovative but approximate methods. Model constraints were provided by the observed size frequency distribution of the asteroid belt, the observed population of asteroid families, the cratered surface of differentiated Asteroid (4) Vesta, and the relatively constant crater production rate of the Earth and Moon over the last 3 Gyr. Using CoEM, we solved for both the shape of the initial main belt size distribution after accretion and the asteroid disruption scaling law . In contrast to previous efforts, we find our derived function is very similar to results produced by numerical hydrocode simulations of asteroid impacts. Our best fit results suggest the asteroid belt experienced as much comminution over its early history as it has since it reached its low-mass state approximately 3.9-4.5 Ga. These results suggest the main belt's wavy-shaped size-frequency distribution is a “fossil” from this violent early epoch. We find that most diameter D?120 km asteroids are primordial, with their physical properties likely determined during the accretion epoch. Conversely, most smaller asteroids are byproducts of fragmentation events. The observed changes in the asteroid spin rate and lightcurve distributions near D∼100-120 km are likely to be a byproduct of this difference. Estimates based on our results imply the primordial main belt population (in the form of D<1000 km bodies) was 150-250 times larger than it is today, in agreement with recent dynamical simulations.  相似文献   

8.
The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9–2.7μm; 28cm?1 resolution). Major minerals include metallic NiFe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.  相似文献   

9.
It is well known that asteroid families have steeper absolute magnitude (H) distributions for H < 12-13 values than the background population. Beyond this threshold, the shapes of the absolute magnitude distributions in the family/background populations are difficult to determine, primarily because both populations are not yet observationally complete. Using a recently generated catalog containing the proper elements of 106,284 main belt asteroids and an innovative approach, we debiased the absolute magnitude distribution of the major asteroid families relative to the local background populations. Our results indicate that the magnitude distributions of asteroid families are generally not steeper than those of the local background populations for H > 13 (i.e., roughly for diameters smaller than 10 km). In particular, most families have shallower magnitude distributions than the background in the range 15-17 mag. Thus, we conclude that, contrary to previous speculations, the population of kilometer-size asteroids in the main belt is dominated by background bodies rather than by members of the most prominent asteroid families. We believe this result explains why the Spacewatch, Sloan Digital Sky Survey, and Subaru asteroid surveys all derived a shallow magnitude distribution for the dimmer members of the main belt population.We speculate on a few dynamical and collisional scenarios that can explain this shallow distribution. One possibility is that the original magnitude distributions of the families (i.e., at the moment of the formation event) were very shallow for H larger than ∼ 13, and that most families have not yet had the time to collisionally evolve to the equilibrium magnitude distribution that presumably characterizes the background population. A second possibility is that family members smaller than about 10 km, eroded over time by collisional and dynamical processes, have not yet been repopulated by the break-up of larger family members. For this same reason, the older (and possibly characterized by a weaker impact strength) background population shows a shallow distribution in the range 15-60 km.  相似文献   

10.
We report new visual and 20-μm photometry obtained when Hektor was seen nearly along its rotation axis. The visual amplitude was near its minimum, only 0.06 mag, confirming the Dunlap-Gehrels (1969) rotation model. The new observations confirm and refine the large size and low albedo assigned by Cruikshank (1977) from observations of the opposite rotation pole. The albedo of this pole is found to be pv = 0.022 ± 0.003, overlapping the uncertainty of Cruikshank's 0.03 value for the opposite pole. The low albedo makes Hektor roughly three times bigger than estimates of a few years ago. The light variations are interpreted as due to elongated shape. If this is correct, Hektor is both the largest and most elongated known Trojan, as well as being the most elongated known asteroid of its size. From considerations of Trojans' peculiar properties, we propose that Hektor is a somewhat dumbbell shaped object roughly 150 × 300 km in size, resulting from partial coalescence of two primitive spheroidal planetesimals during a relatively low-speed collision in the Trojan Lagrangian cloud, with energy too low for complete disruption. Calculations supporting this model indicate that Trojans may be less altered by collisions than belt asteroids. Observations in 1979 and 1980 can help test this model. A note added on July 17, 1978 relates our result to recent evidence of possible binary asteroid pairs, which may also arise from early low-velocity asteroid-asteroid interactions.  相似文献   

11.
The asteroid 133 Cyrene was observed photometrically on 17 nights during oppositions in 1979 and 1980. The synodic period of rotation was found to be 12.h708 ± 0.h001 with an amplitude of ~0.m30 during both oppositions. At large phase angles, the phase relation is quite ordinary (βv ≈ 0.025 mag/degree); however, the low phase angle observations reveal a dramatic opposition brightening, ~0.2 mag/degree near zero phase angle. The absolute magnitude, V(1,0), extrapolated with the above linear phase coefficient, is 8.40. The following color indicates were also measured: B- V = 0.90, U-B = 0.51.  相似文献   

12.
Attention is called to the availability of the TRIAD computer file, a compilation of all reliable physical parameters for minor planets.  相似文献   

13.
14.
I have computed proper elements for 174 asteroids in the 1 : 1 resonance with Jupiter, that is for all the reliable orbits available (numbered and multi-opposition). The procedure requires numerical integration, under the perturbations by the four major planets, for 1,000,000 years; the output is digitally filtered and compressed into a synthetic theory (as defined within theLONGSTOP project). The proper modes of oscillation of the variables related to eccentricity, perihelion, inclination and node define proper elements. A third proper element is defined as the amplitude of the oscillation of the semimajor axis associated with the libration period; because of the strong nonlinearity of the problem, this component cannot be determined by a simple Fourier transform to the frequency domain. I therefore give another definition, which results in very good stability with time. For 87% of the computed orbits, the stability of the proper elements-at least over 1M yr-is within the following bounds: 0.001AU in semimajor axis, 0.0025 in eccentricity and sine of inclination. Half of the cases with degraded stability of the proper elements are found to be chaotic, with e-folding times between 16,000 and 660,000yr; in some other cases, chaotic behaviour does not result in a significantly decreased stability of the proper elements (stable chaos). The accuracy and stability of these proper elements is good enough to allow a search for asteroid families; however, the dynamical structure of the Trojan belt is very different from the one of the main belt, and collisional events among Trojans can result in a distribution of fragments difficult to identify. The occurrence of couples of Trojans with very close proper elements is proven not to be statistically significant in almost all cases. As the only exception, the couple 1583 Antilochus — 3801 Thrasimedes is significant; however, it is not easy to account for it by a conventional collisional theory. The Menelaus group is confirmed as a strong candidate collisional family; Teucer and Sarpedon could be considered as significant clusters. A number of other clumps are detected (by the same automated clustering method used for the main belt by Zappalà et al., 1990, 1992), but the total number of Trojans with reliable orbits is not large enough to detect many significant candidate families.  相似文献   

15.
D.P. Cruikshank  T.J. Jones 《Icarus》1977,31(4):427-429
We present a radiometric observation of asteroid 1976 AA, and formulate a simple model for the infrared thermal phase function so that our data can be compared with similar measurements made at different phase angles. The radiometric diameter of 1976 AA from our observation is 940+200?100 meters and the geometric albedo is 0.18 ± 0.06, in satisfactory agreement with another published radiometric observation.  相似文献   

16.
The present paper reviews the Nekhoroshev theorem from the point of view of physicists and astronomers. We point out that Nekhoroshev result is strictly connected with the existence of a specific structure of the phase space, the existence of which can be checked with several numerical tools. This is true also for a degenerate system such as the one describing the motion of an asteroid in the so called main belt. The main difference is that in some parts of the belt, the Nekhoroshev result cannot apply a priori. Mean motion resonances of order smaller than the logarithm of the mass of Jupiter and first order secular resonances must be excluded. In the remaining parts, conversely, the Nekhoroshev theorem can be proved, provided someparameters, such as the masses, the eccentricities and the inclinations of the planets are small enough. At the light of this result, a massive campaign of numerical integrations of real and fictitious asteroids should allow to understand which is the real dynamical structure of the asteroid belt.  相似文献   

17.
It is demonstrated how globally distributed outgassing activity on a triaxial comet nucleus bridges the gap between the intuitive Sekanina model, used for comet orbit solutions, and the physics of the problem. In this activity and shape limit, it is shown how a recoil force component, which originates from a day-side restricted sublimation process, is necessary to describe the comet's rotational evolution. Modifications of the non-gravitational force cosines are suggested, with a fundamentally different interpretation than before. Applications to asteroid rotation yield that the ability of specular reflection, of solar photons on an asteroid's surface, to change the asteroid's rotation period and equatorial obliquity, is not dependent on the overall shape of the asteroid.  相似文献   

18.
A.W. Harris  J.W. Young  E. Bowell 《Icarus》1980,43(2):181-183
Photoelectric lightcurves of 304 Olga were obtained at Table Mountain Observatory in 1978 near opposition. From these observations, and several observations made from Lowell Observatory a month later, we obtain a rotation period of 18.36 ± 0.02 hr and lightcurve amplitude of 0m·20. The range of solar phase angle covered by the observations is from 2°·0 to 22°. The resulting phase function is well fit by the Bowell and Lumme model (1979, in Asteroids, T. Gehrels, Ed., pp. 132–169, Univ. of Arizona Press, Tucson), with Q = 0.02. This low value of Q is suggestive of a low-albedo object.  相似文献   

19.
We used observations at 4 oppositions to calculate the rotation of the asteroid (16) Psyche. Our results are 1) the pole is λ 225°, β = +5° (1950.0), 2) the rotation is direct, and 3) the sidereal period is 4h 11m 45s.42 ± 0s.01.At the three oppositions of 1955, 1965 and 1980, the relative positions of the Sun, the Earth and the asteroids were almost the same, and the observed light curves were also nearly the same. Therefore, this asteroid may be said to have shown no precession over the 20 years observed.  相似文献   

20.
Andrew F Cheng 《Icarus》2004,169(2):357-372
A new synthesis of asteroid collisional evolution is motivated by the question of whether most asteroids larger than ∼1 km size are strengthless gravitational aggregates (rubble piles). NEAR found Eros not to be a rubble pile, but a shattered collisional fragment, with a through-going fracture system, and an average of about 20 m regolith cover. Of four asteroids visited by spacecraft, none appears likely to be a rubble pile, except perhaps Mathilde. Nevertheless, current understanding of asteroid collisions and size-dependent strength, and the observed distribution of rotation rates versus size, have led to a theoretical consensus that many or most asteroids larger than 1 km should be rubble piles. Is Eros, the best-observed asteroid, highly unusual because it is not a rubble pile? Is Mathilde, if it is a rubble pile, like most asteroids? What would be expected for the small asteroid Itokawa, the MUSES-C sample return target? An asteroid size distribution is synthesized from the Minor Planet Center listing and results of the Sloan Digital Sky Survey, an Infrared Space Observatory survey, the Small Main-belt Asteroid Spectroscopic Survey and the Infrared Astronomical Satellite survey. A new picture emerges of asteroid collisional evolution, in which the well-known Dohnanyi result, that the size distribution tends toward a self-similar form with a 2.5-index power law, is overturned because of scale-dependent collision physics. Survival of a basaltic crust on Vesta can be accommodated, together with formation of many exposed metal cores. The lifetimes against destruction are estimated as 3 Gyr at the size of Eros, 10 Gyr at ten times that size, and 40 Gyr at the size of Vesta. Eros as a shattered collisional fragment is not highly unusual. The new picture reveals the new possibility of a transition size in the collisional state, where asteroids below 5 km size would be primarily collisional breakup fragments whereas much larger asteroids are mostly eroded or shattered survivors of collisions. In this case, well-defined families would be found in asteroids larger than about 5 km size, but for smaller asteroids, families may no longer be readily separated from a background population. Moreover, the measured boulder size distribution on Eros is re-interpreted as a sample of impactor size distributions in the asteroid belt. The regolith on Eros may result largely from the last giant impact, and the same may be true of Itokawa, in which case about a meter of regolith would be expected there. Even a small asteroid like Itokawa may be a shattered object with regolith cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号