共查询到20条相似文献,搜索用时 15 毫秒
1.
The TCO2, O2, TA and δ13C data of the 1969 Geosecs Intercalibration Cruise was analyzed and found to be consistent with a vertical mixing model which assumes that each point along a vertical profile is a mixture of the upper and lower boundaries. Calculated regression coefficients are in agreement with the model of Redfield et al. (1963) and with the assumption that TA variation is due to carbonate reaction. Oxygen consumption and TCO2 production decrease exponentially with depth and approximately 80% of ΔCO2 can be accounted for, on average, by O2 consumption. The remaining 20% are probably due to carbonate solution which seems to take place at depths below 2,500 m. The present study suggests that the isotopic composition (δ13C) of the carbon source, required to account for most of the oxygen consumed, may be heavier than the value of −23%. assigned to dissolved organic carbon and particulate organic carbon. 相似文献
2.
Recovery of thermohaline circulation under CO2 stabilization and overshoot scenarios 总被引:1,自引:0,他引:1
Norikazu. Nakashiki Dong-Hoon Kim Frank O. Bryan Yoshikatsu Yoshida Daisuke Tsumune Koki Maruyama Hideyuki Kitabata 《Ocean Modelling》2006,15(3-4):200
In this study we examine the behavior of the thermohaline circulation, as simulated by the Community Climate System Model version 3 (CCSM3), for several centuries following CO2 stabilization for the SRES B1 and A1B scenarios and for an “overshoot” scenario in which CO2 levels temporarily reach the same level as in the A1B scenario before declining to an ultimate stabilization level that is identical to the B1 case. While we find no evidence for irreversible changes of the thermohaline circulation in the overshoot experiment, the interplay of the different timescales of the temperature response of the surface and interior ocean does lead to a number of differences in the long-term response of the ocean between it and the B1 stabilization scenario where the same GHG levels are approached by different paths. The stronger initial warming and its slow penetration into the deeper ocean, followed by a transient surface cooling in the overshoot scenario leads to lower static stability, deeper mixing, and a more rapid recovery of the thermohaline circulation than in the B1 stabilization scenario. While the overshoot scenario recovers surface conditions (e.g. SST, sea ice extent) very similar to the B1 scenario shortly after reaching the same GHG levels, the additional accumulation of heat in the interior ocean during the period of higher forcing causes the global mean ocean temperature and steric sea level to remain higher than in the B1 stabilization scenario for at least another several centuries. 相似文献
3.
二氧化碳,海洋与气候 总被引:10,自引:0,他引:10
文章讨论了由于大气中CO_2浓度的增加所产生的“温室效应”和海洋与CO_2之间的相互作用。已有的研究表明,自从工业革命以来,大气中CO_2浓度已由290ppmv增至340ppmv左右,并且目前人类每年大约向大气输送180×10~8t的CO_2,大气的平均温度以0.1—0.5℃/10α的速度增加。据估计,截止本世纪末地球大气的平均温度将升高3±1.5℃。这种现象对地球的环境生态将产生明显的影响。海洋是碳的巨大贮存所(约390×10~11t溶解碳),海洋能够吸收和释放CO_2;CO_2在海洋的穿透深度为700m。已有的研究结果表明,CO_2在海洋和大气之间处于不平衡状态。本文提出,是否可以通过研究CO_2在大气与海洋之间的相互作用,海洋吸收、贮存和转移CO_2的能力来了解碳在海洋中的转移通道和大气中CO_2浓度的变化倾向,从而预测世界范围内气候的变化趋势,并初步予以探讨。 相似文献
4.
微藻固碳是一种新型节能减排技术,具有长期可持续发展的潜力。本文对两株富油微藻(球等鞭金藻和微拟球藻)进行了富碳培养下生长特性及中性脂积累特性的研究。两株富油微藻的最佳培养条件为10%CO2浓度和f培养基。本研究对两株富油微藻的最大生物量产率、总脂含量、最大油脂产率、微藻的C含量和CO2固定率进行了测定。球等鞭金藻的各参数指标分别为:142.42±4.58g/(m2·d),39.95%±0.77%,84.47±1.56g/(m2·d),45.98%±1.75%和33.74±1.65g/(m2·d)。微拟球藻的各参数指标分别为:149.92±1.80g/(m2·d),37.91%±0.58%,89.90±1.98g/(m2·d),46.88%±2.01%和34.08±1.32g/(m2·d)。实验结果显示,两株海洋微藻均属于高固碳优良藻株,适合应用于微藻烟气减排技术开发,具备用于海洋生物质能耦合CO2减排开发的潜力。 相似文献
5.
Ideally, the correction of the measured CO2 fugacity (fCO2) at temperature Tm to fCO2 at the in-situ temperature Tin should be made by using at least 2 known parameters (pH-AT, CT-AT,…) and the reliable constants for carbonic acid. In practice however, a measured CO2 property pair is not always available. When fCO2 is measured alone, one must make an estimate of the effect of temperature on seawater fCO2 from the accurate knowledge of seawater salinity and temperature and the approximate knowledge of the carbonate parameters. In this paper we present an empirical relationship that can be used to estimate the effect of temperature on fCO2. The equation is of the form: where fCO2[t] and fCO2[20] represent fCO2 at temperatures t°C and 20°C, respectively; the parameters A, B, etc. are functions of the ratio X = CT/AT: where the parameters ai, bi, etc. are functions of salinity.The 25-parameter equation is fitted by the values of fCO2 calculated using the constants of Goyet and Poisson (1989), when X varies from 0.8 to 1.0, t varies from −1dgC to 40°C, and S varies from 30 to 40. For Tm - Tin within ± 10°C, direct measurements of fCO2 as a function of the temperature (from −I to 30°C verify this equation within less than ±5 μatm. 相似文献
ƒCO2[t] − ƒCO2[20]=A + Bt + Ct2 + Dt3 + Et4
E = e0 + e1X + e2X2ln(X) + e3exp(X) + e4/ln(X)
6.
CO2 exchange at air-sea interface in the Huanghai Sea 总被引:3,自引:0,他引:3
INTRODUCTIONTheroleoftheoceaniscrucialintheoverallcycleofCOZ,withitsspecialpumpingmechanismssuchassolubilitypumpingattheair-seainterfacewithcarbonatechemistry,biologicalpumpinginsurfacewatersandalsointhewatercolumn,anddynamicpumpingassociatedwithoceancirculation(BroeckerandPeng,1982).Inordertounderstandthesevariouspumpingprocessesintheocean,muchresearchhasbeencarriedoutonaglobalscaleasapartofeffortstounderstandtheglobalgeochemicalcycleofCOZ.TheHuanghaiSea,atypicalmid-latitudeepicontine… 相似文献
7.
F. Touratier C. Goyet C. Coatanoan C. Andri 《Deep Sea Research Part I: Oceanographic Research Papers》2005,52(12):2275-2284
With a limited number of properties (salinity, temperature, total dissolved inorganic carbon, total alkalinity, and oxygen) from a recent cruise in the tropical Atlantic Ocean, we use the simple and recent approach TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) to estimate the distribution of anthropogenic CO2 along three latitudinal sections. In order to assess the quality of the anthropogenic CO2 distribution, results from the method are compared to the CFC-11 measurements. We discuss the large-scale distribution of the main water masses of the tropical Atlantic Ocean in the light of the anthropogenic CO2 and the CFC-11 distributions. Keeping in mind that the anthropogenic CO2 emission began 60 years earlier than that of CFC-11, the former provides new insight on the local circulation and efficiency of the tropical waters to store the atmospheric carbon. 相似文献
8.
An overview into the development of a carbon dioxide (CO2) removal plant for submarines to meet the Navy's CO2 requirements is presented.The monoethanolamine (MEA)-CO2 removal process and parametric studies to reduce atmospheric CO2-levels in submarines to 0.5% and possibly 0.2% are discussed. 相似文献
9.
Diurnal changes in seawater temperature affect the amount of air–sea gas exchange taking place through changes in solubility and buoyancy-driven nocturnal convection, which enhances the gas transfer velocity. We use a combination of in situ and satellite derived radiometric measurements and a modified version of the General Ocean Turbulence Model (GOTM), which includes the National Oceanic and Atmospheric Administration Coupled-Ocean Atmospheric Response Experiment (NOAA-COARE) air–sea gas transfer parameterization, to investigate heat and carbon dioxide exchange over the diurnal cycle in the Tropical Atlantic. A new term based on a water-side convective velocity scale (w*w) is included, to improve parameterization of convectively driven gas transfer. Meteorological data from the PIRATA mooring located at 10°S10°W in the Tropical Atlantic are used, in conjunction with cloud cover estimates from Meteosat-7, to calculate fluxes of longwave, latent and sensible heat along with a heat budget and temperature profiles during February 2002. Twin model experiments, representing idealistic and realistic conditions, reveal that over daily time scales the additional contribution to gas exchange from convective overturning is important. Increases in transfer velocity of up to 20% are observed during times of strong insolation and low wind speeds (<6 m s−1); the greatest enhancement from w*w to the CO2 flux occurs when diurnal warming is large. Hence, air–sea fluxes of CO2 calculated using simple parameterizations underestimate the contribution from convective processes. The results support the need for parameterizations of gas transfer that are based on more than wind speed alone and include information about the heat budget. 相似文献
10.
This paper evaluates the simultaneous measurement of dissolved gases (CO2 and O2/Ar ratios) by membrane inlet mass spectrometry (MIMS) along the 180° meridian in the Southern Ocean. The calibration of pCO2 measurements by MIMS is reported for the first time using two independent methods of temperature correction. Multiple calibrations and method comparison exercises conducted in the Southern Ocean between New Zealand and the Ross Sea showed that the MIMS method provides pCO2 measurements that are consistent with those obtained by standard techniques (i.e. headspace equilibrator equipped with a Li–Cor NDIR analyser). The overall MIMS accuracy compared to Li–Cor measurements was 0.8 μatm. The O2/Ar ratio measurements were calibrated with air-equilibrated seawater standards stored at constant temperature (0 ± 1 °C). The reproducibility of the O2/Ar standards was better than 0.07% during the 9 days of transect between New Zealand and the Ross Sea.The high frequency, real-time measurements of dissolved gases with MIMS revealed significant small-scale heterogeneity in the distribution of pCO2 and biologically-induced O2 supersaturation (ΔO2/Ar). North of 65°S several prominent thermal fronts influenced CO2 concentrations, with biological factors also contributing to local variability. In contrast, the spatial variation of pCO2 in the Ross Sea gyre was almost entirely attributed to the biological utilization of CO2, with only small temperature effects. This high productivity region showed a strong inverse relationship between pCO2 and biologically-induced O2 disequilibria (r2 = 0.93). The daily sea air CO2 flux ranged from − 0.2 mmol/m2 in the Northern Sub-Antarctic Front to − 6.4 mmol/m2 on the Ross Sea shelves where the maximum CO2 influx reached values up to − 13.9 mmol/m2. This suggests that the Southern Ocean water (south of 58°S) acts as a seasonal sink for atmospheric CO2 at the time of our field study. 相似文献
11.
12.
依据2011年3月4日对胶州湾走航连续实测所得pCO2数据,结合水文、化学和生物等要素的同步实测资料,对胶州湾海域pCO2分布及其影响因素进行了初步探讨,并估算了3月海-气CO2通量。结果表明:3月胶州湾表层海水pCO2实测值在191~332μatm之间,平均值为278μatm,海-气CO2通量在-22.76~-7.13mmol·m-2·d-1,平均值为-14.2mmol·m-2·d-1,这一时期胶州湾从大气吸收约1.59×103t C,表现为大气CO2的强汇。生物活动是影响这一时期表层海水pCO2分布的主要原因。 相似文献
13.
CarbonatechemistryandtheanthropogenicCO_2intheSouthChinaSea¥Chen-TungArthurChenandMing-HsiungHuang(ReceivedSeptember21,1993;a?.. 相似文献
14.
The 3rd Chinese National Arctic Research Expedition(CHINARE–Arctic III) was carried out from July to September in 2008. The partial pressure of CO2(pCO2) in the atmosphere and in surface seawater were determined in the Bering Sea during July 11–27, 2008, and a large number of seawater samples were taken for total alkalinity(TA) and total dissolved inorganic carbon(DIC) analysis. The distributions of CO2 parameters in the Bering Sea and their controlling factors were discussed. The pCO2 values in surface seawater presented a drastic variation from 148 to 563 μatm(1 μatm = 1.013 25×10-1 Pa). The lowest pCO2 values were observed near the Bering Sea shelf break while the highest pCO2 existed at the western Bering Strait. The Bering Sea generally acts as a net sink for atmospheric CO2 in summer. The air-sea CO2 fluxes in the Bering Sea shelf, slope, and basin were estimated at-9.4,-16.3, and-5.1 mmol/(m2·d), respectively. The annual uptake of CO2 was about 34 Tg C in the Bering Sea. 相似文献
15.
海浪对北太平洋海-气二氧化碳通量的影响 总被引:1,自引:0,他引:1
利用4种海-气界面气体传输速率公式对比研究了北太平洋气体传输速率及其CO2通量的季节变化特征。与单纯依赖风速的算法相比, 考虑波浪影响的气体传输速率和CO2通量在空间分布和季节变化上具有明显差异。在低纬度地区(0°~30°N), 波浪参数使气体传输速率下降, 海洋对大气CO2的吸收减少, 而在30°N以北范围内则出现新的气体传输速率高值区, 海洋对大气的吸收增加。进一步研究了黑潮延伸体区域的气候态月平均气体传输速率和CO2通量。结果表明, 该区域气体传输速率和CO2通量最大值分别出现于冬季和春季, 引入波浪参数后, 虽然该区域气体传输速率和CO2通量平均值没有明显差异, 但季节变化强度显著增强。 相似文献
16.
生物固氮作用是一个重要的海洋新氮来源,在海洋生物地球化学循环中扮演着不可替代的角色。基于稳定同位素(15N2)示踪吸收法,是目前直接测定海洋生物固氮速率最有效的手段。其中,高效、洁净地将15N2引入海水培养体系,并准确定量培养体系底物的同位素示踪水平,是同位素示踪吸收法准确获取固氮速率的关键。本研究针对15N2同位素示踪剂引入这一关键环节进行了探讨,确认改进气泡法是将15N2引入海水培养体系的首选操作。在对培养体系造成的较小扰动的情况下,可将培养体系氮气底物的15N原子丰度提升至10%以上,相对于另一种导入同位素示踪剂的手段——预溶解海水法,改进气泡法将培养瓶中氮气底物的15N原子丰度提升了近200%。此外,改进气泡法还具有最小化痕量金属沾污、操作简便等优点。将改进气泡法结合与稳定同位素比值质谱测定结合,是准确测定水体生物固氮速率的推荐方法。 相似文献
17.
B. Patti C. Guisande I. Riveiro P. Thejll A. Cuttitta A. Bonanno G. Basilone G. Buscaino S. Mazzola 《Estuarine, Coastal and Shelf Science》2010
It is not clear whether global warming will favour or reduce global ocean phytoplankton productivity in coastal areas. Moreover, the relative contributions made by natural and/or anthropogenic factors to possible changes in phytoplankton productivity are not clear. As the relationship between primary production and alongshore wind forcing is well established for the Eastern Boundary Current (EBC) ecosystems, our aim is to determine whether the changes experienced over the last five decades (1958–2007) in atmospheric CO2 and solar activity have been able to affect the wind regime and water column stability in the most biologically productive upwelling areas of California, Canary, Humboldt and Benguela. We approached the work by statistically studying the effect of solar activity and atmospheric CO2 on surface alongshore wind stress and on water column stability. There was an increasing trend in wind stress and water column stability in all the upwelling areas over the period studied (with the single exception of stability in the California EBC system). The analysis of detrended series evidenced significant relationships between atmospheric CO2 concentration and wind stress and water column stability in the coastal upwelling areas investigated. In addition, wind stress and stability data were found to be consistent, with negative linear relationships between wind stress and CO2 in most of the sites in the Benguela, Canary and Humboldt regions associated, as expected, to positive relationships when water column stability is used as regressand. The results of the present study suggest that greenhouse gas forcing, independent of its well known general increasing trend, was able to decrease wind stress intensity and increase water column stability for the period 1958 to present in most of the sites of the four Eastern Boundary Ecosystems studied, with the one exception of the California region. Conversely, the impact of solar activity appeared to be quite low compared to the greenhouse gas forcing. 相似文献
18.
温室气体过量排放引起了明显的全球气候变化及诸多次生灾害,CO2捕集与地质封存技术应运而生。中国东海沿岸CO2排放源众多,但陆上盆地面积狭小,无法满足巨量CO2封存的需求。根据相关学者做出的中国全海域级碳封存适宜性评价,东海陆架盆地在中国近海盆地中碳封存适宜性排名第3,面积宽广且封闭性好,因此,在此基础上对东海陆架盆地开展了盆地级碳封存适宜性评价。结合专家意见和相关学者研究成果,利用模糊综合评价法和层级分析法确立了适宜性评价指标体系及指标权重,再根据盆地内各二级构造单元的相关地质资料,按照评价指标分级赋分表对各单元的每个评价指标进行评分,结合权重计算出综合适宜性评分。综合考虑碳封存容量、封闭性及可操作性的评价结果认为,台北坳陷为盆地中碳封存综合适宜性最好的单元,可作为优先实验性封存区。 相似文献
19.
CO2是引起全球气候变暖的最重要温室气体。大气中过量CO2被海水吸收后将改变海水中碳酸盐体系的组成,造成海水酸化,危害海洋生态环境。本文采用局部近似回归法对2013年12月—2014年11月期间西沙海洋大气CO2浓度连续监测数据进行筛分,得到西沙大气CO2区域本底浓度。结果表明,西沙大气CO2区域浓度具有明显的日变化和季节变化特征。4个季节西沙大气CO2区域本底浓度日变化均表现为白天低、夜晚高,最高值405.39×10-6(体积比),最低值399.12×10-6(体积比)。西沙大气CO2区域本底浓度季节变化特征表现为春季和冬季高,夏季和秋季低。CO2月平均浓度最高值出现在2013年12月,为406.22×10-6(体积比),最低值出现在2014年9月,为398.68×10-6(体积比)。西沙大气CO2区域本底浓度日变化主要受本区域日照和温度控制。季节变化主要控制因素是南海季风和大气环流,南海尤其是北部海域初级生产力变化和海洋对大气CO2的源/汇调节作用。 相似文献
20.
Atmospheric and oceanic pCO2 were measured continuously along an Atlantic Meridional transect (50°N–50°S) in September–October 1995 and 1996 (U.K. to the Falklands Islands) and in April–May 1996 (Falklands Islands to the UK). The Atlantic ocean was a net sink for atmospheric CO2 for all 3 transects. The largest sinks were located at high latitudes, in regions of high wind speed, where strong CO2 undersaturations, associated with high biological activity, were observed. In these regions the partial pressure difference between the ocean and the atmosphere reached −110 μatm. A CO2 source occurred in the equatorial region between 0° and 10°S, where ΔpCO2 of up to 40 μatm was found. Another source was in the northern subtropical gyre where its extension varied according to the season. Along the whole transect the October cruises exhibited similar pCO2 distributions suggesting a dominance of the seasonal variability and small year to year changes. 相似文献