首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haughton is a ~24 Myr old midsize (apparent diameter 23 km) complex impact structure located on Devon Island in Nunavut, Canada. The center of the structure shows a negative gravity anomaly of ?12 mGal coupled to a localized positive magnetic field anomaly of ~900 nT. A field expedition in 2013 led to the acquisition of new ground magnetic field mapping and electrical resistivity data sets, as well as the first subsurface drill cores down to 13 m depth at the top of the magnetic field anomaly. Petrography, rock magnetic, and petrophysical measurements were performed on the cores and revealed two different types of clast‐rich polymict impactites: (1) a white hydrothermally altered impact melt rock, not previously observed at Haughton, and (2) a gray impact melt rock with no macroscopic sign of alteration. In the altered core, gypsum is present in macroscopic veins and in the form of intergranular selenite associated with colored and zoned carbonate clasts. This altered core has a natural remanent magnetization (NRM) four to five times higher than materials from the other core but the same magnetic susceptibility. Their magnetization is still higher than the surrounding crater‐fill impact melt rocks. X‐ray fluorescence data indicate a similar proportion of iron‐rich phases in both cores and an enrichment in silicates within the altered core. In addition, alternating‐field demagnetization results show that one main process remagnetized the rocks. These results support the hypothesis that intense and possibly localized post‐impact hydrothermal alteration enhanced the magnetization of the clast‐rich impact melt rocks by crystallization of magnetite within the center of the Haughton impact structure. Subsequent erosion was followed by in situ concentration in the subsurface leading to large magnetic gradient on surface.  相似文献   

2.
Abstract— Alteration of surficial suevites at Ries crater, Germany was studied by means of X‐ray diffraction and scanning electron microscopy. Here, we discuss the origin of hydrous silicate (clay) phases in these suevites that have been previously interpreted as resulting from post‐impact hydrothermal processes. The results of this study indicate that the dominant alteration phases are dioctahedral Al‐Fe montmorillonite and halloysite, which are typical low temperature clay minerals. We suggest that the surficial suevites are not altered by hydrothermal processes and that alteration occurred by low temperature subsurface weathering processes. If the surficial suevites were indeed hydrothermally modified during the early stages of post‐impact cooling, then the alteration was of limited character and is completely masked by later weathering.  相似文献   

3.
Zircon in five samples of variably comminuted, melted, and hydrothermally altered orthogneiss from the Maniitsoq structure of southern West Greenland yield a weighted mean 207Pb/206Pb age of 3000.9 ± 1.9 Ma (ion probe data, n = 37). The age data constitute a rare example of pervasive and nearly complete isotopic resetting of zircon during a regional hydrothermal event. Many zircon grains are homogeneous or display weak flame‐like patterns in backscattered electron images. Other grains show complex internal textures, where homogeneous, high‐U fronts commonly cut across relict igneous‐type oscillatory zonation. Inclusions of quartz, plagioclase, mica, and other Al ± Na ± Ca ± Fe‐bearing silicates are very common. In two samples, selective replacement of zircon with baddeleyite occurs along concentric zones with relict igneous zonation, and as specks a few microns large within recrystallized, high‐U areas. We interpret the 3000.9 ± 1.9 Ma date as the minimum age of the recently proposed impact structure at Maniitsoq. The great geographical extent and intensity of the hydrothermal event suggest massive invasion of water into the currently exposed crust, implying that the age of the hydrothermal alteration would closely approximate the age of the proposed impact at Maniitsoq. At the western margin of the Taserssuaq tonalite complex, which postdates the Maniitsoq event, a 207Pb/206Pb mean age of 2994.6 ± 3.4 Ma obtained from zircon has mostly retained igneous‐type oscillatory zonation. A subsequent thermal event at approximately 2975 Ma is recorded in several samples by zircon with baddeleyite replacement textures.  相似文献   

4.
The ~15 Ma, 26 km diameter Ries impact structure in south‐central Germany was one of the first terrestrial impact structures where evidence of impact‐associated hydrothermal alteration was recognized. Previous studies suggested that pervasive, high‐temperature hydrothermal activity was restricted to the area within the “inner ring” (i.e., the crater‐fill impactite units). Here we present mineralogical evidence for localized hydrothermal activity in the ejecta beyond the crater rim in two previously unstudied settings: a pervasively altered lens of suevite ejecta directly overlying the Bunte Breccia at the Aumühle quarry; and suevite ejecta at depth overlain by ~20 m of lacustrine sediments sampled by the Wörnitzostheim 1965 drill core. A comprehensive set of X‐ray diffraction analyses indicates five distinct alteration regimes (1) surficial ambient weathering characterized by smectite and a minor illitic component; (2) locally restricted hydrothermal activity characterized by an illitic component and minor smectite; (3) hydrothermal activity at depth characterized by smectite, a minor illitic component, and calcite; (4) hydrothermal activity at depth characterized by smectite, a minor illitic component, calcite, zeolites, and clinochlore; and (5) pervasive hydrothermal activity at depth characterized by smectite, a minor illitic component, and minor clinochlore. These data spatially extend the Ries postimpact hydrothermal system suggesting a much more extensive, complex, and dynamic system than previously thought. Constraining the mineralogical alteration regimes at the Ries impact structure may also further our understanding of impact‐associated phyllosilicate formation on Mars with implications for climate models and habitability.  相似文献   

5.
Horton E. Newsom 《Icarus》1980,44(1):207-216
A model of the interaction of water with an impact melt sheet is constructed to explain the presence of hydrothermal alteration, fluid flow channels, and the redistribution of volatile elements in terrestrial melt sheets. A calculation of the amount of water vaporized beneath a melt sheet with a large fraction of melt results in a maximum total steam/melt sheet ratio of 23% by weight. The model also applies to Martian impact melt sheets, which have a total volume greater than a global layer 60 m thick. Hydrothermal circulation of steam in Martian melt sheets may have produced iron-rich alteration clays, ferric hydroxides, and near-surface accumulations of salts. The ability of vapor-dominated hydrothermal systems of concentrate sulfate relative to chloride is consistent with the high sulfate to chloride ratio found in the Martian soil by the Viking landers. A major fraction of the Martian soil may consist of the erosion products of hydrothermally altered impact melt sheets.  相似文献   

6.
Insoluble organic matter (IOM) and hydrothermally treated IOM extracted from two carbonaceous chondrites, Murchison and Allende, was studied using sulfur K‐edge XANES (X‐ray absorption near edge structure) and μ‐Raman spectroscopy, with the aim to understand their IOM's sulfur speciation and structural order, and how aqueous alteration or thermal metamorphism may have transformed these materials. We found that the sulfur‐functional group chemistry of both the Murchison IOM and hydrothermally treated IOM samples have a large chemical variability ranging from oxidation states of S?2 to S+6, and exhibit a transformation in their oxidation state after the hydrothermal treatment (HT) to produce thiophenes and thiol compounds. Sulfoxide and sulfite peaks are also present in Murchison. Sulfates considered intrinsic to Murchison are most likely preaccretionary in nature, and not a result of reactions with water at high temperatures on the asteroid parent body. We argue that the reduced sulfides may have formed in the CM parent body, while the thiophenes and thiol compounds are a result of the HT. Micro‐Raman spectra show the presence of aliphatic and aromatic moieties in Murchison's material as observed previously, which exhibits no change after HT. Because the Murchison IOM was modified, as seen by XANES analysis, absence of a change observed using micro‐Raman indicated that although the alkyl carbons of IOM were cleaved, the aromatic network was not largely modified after HT. By contrast, Allende IOM contains primarily disulfide and elemental sulfur, no organic sulfur, and shows no transformation after HT. This nontransformation of Allende IOM after HT would indicate that parent body alteration of sulfide to sulfate is not feasible up to temperatures of 300°C. The reduced sulfur products indicate extreme secondary chemical processing from the precursor compounds in its parent body at temperatures as high as 624°C, as estimated from μ‐Raman D band parameters. The Raman parameters in Allende IOM that was interpreted in terms of amorphous carbon with regions of large clusters of benzene rings, was transformed after the HT to those with fewer benzene rings.  相似文献   

7.
Abstract— The well‐preserved Kärdla impact crater, on Hiiumaa Island, Estonia, is a 4 km diameter structure formed in a shallow Ordovician sea ?455 Ma ago into a target composed of thin (?150 m) unconsolidated sedimentary layer above a crystalline basement composed of migmatite granites, amphibolites and gneisses. The fractured and crushed amphibolites in the crater area are strongly altered and replaced with secondary chloritic minerals. The most intensive chloritization is found in permeable breccias and heavily shattered basement around and above the central uplift. Alteration is believed to have resulted from convective flow of hydrothermal fluids through the central areas of the crater. Chloritic mineral associations suggest formation temperatures of 100–300 °C, in agreement with the most frequent quartz fluid inclusion homogenization temperatures of 150–300 °C in allochthonous breccia. The rather low salinity of fluids in Kärdla crater (<13 wt% NaCleq) suggests that the hydrothermal system was recharged either by infiltration of meteoric waters from the crater rim walls raised above sea level after the impact, or by invasion of sea water through the disturbed sedimentary cover and fractured crystalline basement. The well‐developed hydrothermal system in Kärdla crater shows that the thermal history of the shock‐heated and uplifted rocks in the central crater area, rather than cooling of impact melt or suevite sheets, controlled the distribution and intensity of the impact‐induced hydrothermal processes.  相似文献   

8.
Abstract Petrographic, electron microprobe, and Raman spectrometric analyses of Yaxcopoil‐1 core samples from the Chicxulub crater indicate that the impact generated a hydrothermal system. Relative textural and vein crosscutting relations and systematic distribution of alteration products reveal a progression of the hydrothermal event in space and time and provide constraints on the nature of the fluids. The earliest calcite, halite, and gaylussite suggest that the impactite sequence was initially permeated by a low temperature saline brine. Subsequent development of a higher temperature hydrothermal regime is indicated by thermal metamorphic diopside‐hedenbergite (Aeg3Fs18‐33En32‐11Wo47‐53) after primary augite and widespread Na‐K for Ca metasomatic alkali exchange in plagioclase. Hydrothermal sphene, apatite, magnetite + (bornite), as well as early calcite (combined 3 to 8 vol%) were introduced with metasomatic feldspar. A lower temperature regime characterized by smectite after probable primary glass, secondary chlorite, and other pre‐existing mafic minerals, as well as very abundant calcite veins and open‐space fillings, extensively overprinted the early hydrothermal stage. The composition of early and late hydrothermal minerals show that the solution was chlorine‐rich (Cl/F >10) and that its Fe/Mg ratio and oxidation state increased substantially (4 to 5 logfO2 units) as temperature decreased through time. The most altered zone in the impactite sequence occurs 30 m above the impact melt. The lack of mineralogical zoning about the impact melt and convective modeling constraints suggest that this unit was too thin at Yaxcopoil‐1 to provide the necessary heat to drive fluids and implies that the hydrothermal system resulted from the combined effects of a pre‐existing saline brine and heat that traveled to the Yaxcopoil‐1 site from adjacent areas where the melt sheet was thicker. Limonite after iron oxides is more common toward the top of the sequence and suggests that the impactite section was subjected to weathering before deposition of the Tertiary marine cover. In addition, scarce latest anatase stringers, chalcopyrite, and barite in vugs, francolite after apatite, and recrystallized halite are the likely products of limited post‐hydrothermal ambient‐temperature diagenesis, or ocean and/or meteoric water circulation.  相似文献   

9.
Abstract— The concentrations of the fluid mobile trace elements lithium, beryllium, boron, and barium were measured in samples of the altered matrix of several impactite breccias of the Yaxcopoil‐1 drill core using secondary ion mass spectrometry (SIMS) to determine the extent of transport due to aqueous or hydrothermal processes. Three of the elements, Li, Be, and B, have higher concentrations in the upper suevite impact breccias than in the lower impact melt deposits by factors of 3.5, 2.2, and 1.5, respectively. Lithium and B are the most enriched elements up section, and appear to have had the greatest mobility. The similar fractionation of Li and B is consistent with fluid transport and alteration under low‐temperature conditions of less than 150 °C based on published experimental studies. In contrast to Li, Be, and B, the concentration of Ba in the altered matrix materials decreases upward in the section, and the concentration of Ba in the matrix is an order of magnitude less than the bulk concentrations, likely due to the presence of barite. The origin of the elemental variations with depth may be related to different protolith compositions in the upper versus the lower impactite units. A different protolith in the altered matrix is suggested by the Mg‐rich composition of the lower units versus the Al‐rich composition of the upper units, which largely correlates with the mobile element variations. The possibility that vertical transport of mobile elements is due to a postimpact hydrothermal system is supported by published data showing that the sediments immediately overlying the impactites are enriched in mobile elements derived from a hydrothermal system. However, the mobile elements in the sediments do not have to originate from the underlying impactites. In conclusion, our data suggests that the impactites at this location did not experience extensive high‐temperature hydrothermal processing, and that only limited transport of some elements, including Li, Be, and B, occurred.  相似文献   

10.
Deep-sea hydrothermal systems have been proposed to be likely environments for chemical evolution and the origin of life on Earth. Recently, experiments have, therefore, been carried out in order to test the hypothesis that amino acids can be synthesized under conditions representing hydrothermally altered oceanic crust. The variety of amino acids that have been detected in such experiments corresponds roughly to that reported previously for electric sparking in reducing gas mixtures. The relative yields of the protein amino acids detected are significantly higher than in electric spark discharge experiments, and the overall yields are about an order of magnitude higher. The amino acids are all racemic.  相似文献   

11.
Abstract The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water‐rich environments provide heat and geological structures that generate and focus sub‐seafloor convective hydrothermal systems. Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact‐induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m‐thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax‐1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites. The least‐altered silicate melt composition intersected in Yax‐1 is that of a calc‐alkaline basaltic andesite with 53.4–56 wt% SiO2(volatile‐free). The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg‐saponite, K‐montmorillonite, celadonite, K‐feldspar, albite, Fe‐oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite‐K‐feldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0–150°C) oxidation and fixation of alkalis due to the interaction of glass‐rich suevite with down‐welling seawater in the outer annular trough intersected at Yax‐1. The alteration represents a cold, Mg‐K‐rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax‐1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impact‐generated hydrothermal convective system.  相似文献   

12.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

13.
The Tenoumer impact structure is a small, well‐preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north‐central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact‐melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass‐rich breccia. Impact‐related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt‐breccia deposits, where they co‐occur with quartz PDFs, and also within melt‐free crystalline ejecta, in the absence of co‐occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.  相似文献   

14.
Abstract– The Chicxulub structure in Mexico, one of the largest impact structures on Earth, was formed 65 Ma by a hypervelocity impact that led to the large mass extinction at the K‐Pg boundary. The Chicxulub impact structure is well preserved, but is buried beneath a sequence of carbonate sediments and, thus, requires drilling to obtain subsurface information. The Chicxulub Scientific Drilling Program was carried out at Hacienda Yaxcopoil in the framework of the International Continental Scientific Drilling Program in 2001–2002. The structure was cored from 404 m down to 1511 m, through three intervals: 794 m of postimpact Tertiary sediments, a 100 m thick impactite sequence, and 616 m of preimpact Cretaceous rocks thought to represent a suite of megablocks. Physical property investigations show that the various lithologies, including the impactite units and the K‐Pg boundary layer, can be characterized by their physical properties, which depend on either changes in fabric or on mineralogical variations. The magnetic properties show mostly dia‐ or paramagnetic behavior, with the exception of the impactite units that indicate the presence of ferromagnetic, probably hydrothermally deposited magnetite and pyrrhotite. The magnetic fraction contributes mainly to enhanced magnetization in the impactite lithologies and, in this way, to the observed magnetic anomalies. The shape and orientation of the magnetic grains are varied and reflect inhomogeneous fabric development and the influence of impact‐related redeposition and hydrothermal activity. The Chicxulub impact occurred at the time of the reverse polarity geomagnetic chron 29R, and this finding is consistent with the age of the K‐Pg boundary.  相似文献   

15.
Abstract— Field studies and analytical scanning electron microscopy indicate that a hydrothermal system was created by the interaction of water with hot, impact‐generated rocks following formation of the 24 km diameter, 23 Ma Haughton impact structure. Hydrothermal alteration is recognized in two settings: within polymict impact breccias overlying the central portion of the structure, and within localized pipes in impact‐generated concentric fault systems. The intra‐breccia alteration comprises three varieties of cavity and fracture filling: (a) sulfide with carbonate, (b) sulfate, and (c) carbonate. These are accompanied by subordinate celestite, barite, fluorite, quartz and marcasite. Selenite is also developed, particularly in the lower levels of the impact breccia sheet. The fault‐related hydrothermal alteration occurs in 1–7 m diameter subvertical pipes that are exposed for lengths of up 20 m. The pipes are defined by a monomict quartz‐carbonate breccia showing pronounced Fe‐hydroxide alteration. Associated sulfides include marcasite, pyrite and chalcopyrite. We propose three distinct stages in the evolution of the hydrothermal system: (1) Early Stage (>200 °C), with the precipitation of quartz (vapor phase dominated); (2) Main Stage (200‐100 °C), with the development of a two‐phase (vapor plus liquid) zone, leading to calcite, celestite, barite, marcasite and fluorite precipitation; and (3) Late Stage (<100 °C), with selenite and fibroferrite development through liquid phase‐dominated precipitation. We estimate that it took several tens of thousands of years to cool below 50 °C following impact. During this time, Haughton supported a 14 km diameter crater lake and subsurface water system, providing a warmer, wetter niche relative to the surrounding terrain. The results reveal how understanding the internal structure of impact craters is necessary in order to determine their plumbing and cooling systems.  相似文献   

16.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

17.
The extent of impact‐generated hydrothermal activity in the 24 km sized Ries impact structure has been controversially discussed. To date, mineralogical and isotopic investigations point to a restriction of hydrothermal activity to the impact‐melt bearing breccias, specifically the crater‐fill suevite. Here, we present new petrographic, geochemical, and isotopic data of postimpact carbonate deposits, which indicate a hydrothermal activity more extended than previously assumed. Specifically, carbonates of the Erbisberg, a spring mound located upon the inner crystalline ring of the crater, show travertine facies types not seen in any of the previously investigated sublacustrine soda lake spring mounds of the Ries basin. In particular, the streamer carbonates, which result from the encrustation of microbial filaments in subaerial spring effluents between 60 and 70 °C, are characteristic of a hydrothermal origin. While much of the primary geochemical and isotopic signatures in the mound carbonates have been obliterated by diagenesis, a postimpact calcite vein from brecciated gneiss of the subsurface crater floor revealed a flat rare earth element pattern with a clear positive Eu anomaly, indicating a hydrothermal fluid convection in the crater basement. Finally, the strontium isotope stratigraphic correlation of the travertine mound with the crater basin succession suggests a hydrothermal activity for about 250,000 yr after the impact, which would be much longer than previously assumed.  相似文献   

18.
The polymict Kaidun microbreccia contains lithologies of C‐type chondrites with euhedral iron sulfide crystals of hydrothermal origin. Our FIB‐TEM study reveals that acicular sulfides in a CM1 lithology are composed of Fe‐rich pyrrhotite with nonintegral vacancy superstructures (NC‐pyrrhotite), troilite, and pentlandite, all showing distinct exsolution textures. Based on phase relations in the Fe‐Ni‐S system, we constrain the temperature of formation of the originally homogeneous monosulfide solid solution to the range of 100–300 °C. In some crystals the exsolution of pentlandite and the microtextural equilibration was incomplete, probably due to rapid cooling. We use thermodynamic modeling to constrain the physicochemical conditions of the extreme hydrothermal alteration in this lithology. Unless the CM1 lithology was sourced from a large depth in the parent body (internal pressure >85 bar) or the temperatures were in the lower range of the interval determined, the water was likely present as vapor. Previously described light δ34S compositions of sulfides in Kaidun's CM1 lithology are likely due to the loss of 34S‐enriched H2S during boiling. Platy sulfide crystals in an adjacent, intensely altered CI1 lithology are composed of Fe‐poor, monoclinic 4C‐pyrrhotite and NC‐pyrrhotite and probably formed at lower temperatures and higher fS2 relative to the CM1 lithology. However, a better understanding of the stability of Fe‐poor pyrrhotites at temperatures below 300 °C is required to better constrain these conditions.  相似文献   

19.
Abstract— The well‐preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid‐size complex impact craters. A moderate‐ to low‐temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ?100–120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (?250 down to ?90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ?150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.  相似文献   

20.
Cover          下载免费PDF全文
View of impactites surrounding the Haughton River valley from atop an impact melt rock outcrop at the Haughton impact structure, Nunavut, Canada. The inset on the left is a calcite‐marcasite vug formed in the post‐impact hydrothermal system and later weathered at low temperatures. A Landsat context image in the lower left shows the location of the vug within the impact structure. For details, see the article by Rebecca Greenberger et al. on p. 2274.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号