首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
鄢全树  钟增球周汉 《地质通报》2004,23(12):1246-1253
碧溪岭和双河地区是大别超高压地体内2个典型的露头区,通过野外露头观察、岩相学和岩石化学研究发现,岩石组合主要为榴辉岩、斜长角闪岩、片麻岩和面理化花岗岩。榴辉岩具有壳源的特点,是地壳岩石在地幔深处发生超高压变质作用形成的;斜长角闪岩为板块折返期间榴辉岩的退变质产物;片麻岩为斜长角闪岩在折返过程中在合适的环境下深熔递进演变的产物;而面理化花岗岩是片麻岩部分熔融的结果。榴辉岩与片麻岩和面理化花岗岩之间为经过改造的原地关系。  相似文献   

3.
This study presents in situ strontium (Sr) isotope and Sr content data on multi-stage epidote crystals from ultrahigh-pressure (UHP) eclogites and omphacite–epidote veins therein at Ganghe (Dabie terrane, China), determined using LA-MC-ICP-MS. The Ganghe eclogites occur as lenses in mainly leucocratic UHP gneisses, and therefore, our data provide insights into the origin, composition, and transport scale of the discrete multi-stage fluids in UHP eclogites during the subduction and exhumation of a continental crust. Four textural types of epidote that record compositional and isotopic signatures of fluid at various metamorphic PT conditions have been distinguished based on petrographic observations and compositional analyses. They are (1) fine-grained high-pressure (HP) epidote inclusions (Ep-In) in omphacite that define the earliest stage of epidote formation in the eclogite; (2) coarse-grained UHP epidote porphyroblasts (Ep-P) that contain omphacite with Ep-In inclusions in the eclogite; (3) fine-grained HP epidote in omphacite–epidote veins (Ep-V) as well as (4) the latest-stage epidote in disseminated amphibolite-facies veinlets (Ep-A), which crosscut the Ep-P or matrix minerals in the eclogite and HP vein. Both Ep-P and Ep-V crystals exhibit significant and complex chemical zonations with respect to the XFe (= Fe/(Fe + Al)) ratio and Sr content. In contrast to the varying Sr contents, Ep-In, Ep-P, and Ep-V have similar and narrow ranges of initial 87Sr/86Sr ratios (from 0.70692 to 0.70720 for Ep-In, from 0.70698 to 0.70721 for Ep-P, and from 0.70668 to 0.70723 for Ep-V), which are significantly different from those in Ep-A (from 0.70894 to 0.71172). The initial 87Sr/86Sr ratio of Ep-A is closer in value to the initial Sr isotopic composition of the gneisses (from 0.710790 to 0.712069) which enclose the UHP eclogite. These data indicate different sources of the eclogite-facies fluids and retrograde amphibolite-facies fluid in the Ganghe eclogites. The HP–UHP fluids responsible for the large amounts of hydrous minerals in the eclogites were internally derived and buffered. The omphacite–epidote veins were precipitated from the channelized solute-rich HP–UHP fluids released from the host eclogite. However, hydrated amphibolite-facies metamorphism during exhumation was mainly initiated by the low-Sr and high-87Sr/86Sr external fluid, which infiltrated into the eclogite from the surrounding gneisses. The eclogite-facies fluids in the Ganghe eclogites were locally derived, whereas the infiltration of the retrograde amphibolite-facies fluid from the gneisses required a long transport, most likely longer than 80 m. This study highlights that the in situ Sr isotopic analysis of multi-stage epidote can be employed as a powerful geochemical tracer to provide key information regarding the origin and behavior of various-stage subduction-zone metamorphic fluids.  相似文献   

4.
大别超高压变质地体四道河地区岩石学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
对四道河地区超高压变质岩剖面的研究分析显示,该剖面有3种岩石类型:榴辉岩类、片麻岩和面理化含榴花岗岩。榴辉岩具不同程度的退变质现象,呈透镜体状产出于斜长角闪岩、片麻岩和面理化含榴花岗岩中,原生矿物组合为石榴石、绿辉石、柯石英和金红石。榴辉岩退变为斜长角闪岩近于等化学系列;片麻岩在主量成分上与榴辉岩及其退变产物(斜长角闪岩)存在突变关系,但微量元素与榴辉岩有一定的相似性;面理化含榴花岗岩主量元素和微量元素地球化学特点为:富SiO2 、K2 O Na2 O和高价阳离子Ga、Y以及REE ,K2 O/Na2 O值低,贫Al、Ca、Mg、Ti、P ,结合构造环境、同位素及年代学资料分析,其应属于后碰撞造山A型花岗岩。基于以上认识推断:大陆板片俯冲至上地幔经历了超高压变质作用,表壳岩变质形成榴辉岩;当超高压变质岩石折返至中下地壳时发生了强烈的减压退变质作用形成斜长角闪岩,随后,与片麻岩及面理化含榴花岗岩一道从中下地壳向地表进一步折返,并一同经历了后期的变质变形作用。  相似文献   

5.
利用Griggs型 5GPa高压仪器 ,在柯石英稳定域围压条件下 ( >3GPa)完成大别山超高压榴辉岩流变学实验 ,建立了榴辉岩流变状态本构方程 (流动律 ) : ε=Aexp( -Q/RT)σn ,应力指数 (n)为 3 .4 ,活化能 (Q)为 4 80kJ/mol,结构常数 (A)为 10 3.3.实验结果表明 :( 1)作为两相矿物组成的榴辉岩 ,其流变学强度在很大程度上取决于强相矿物 (石榴石 )和弱相矿物 (绿辉石 )含量比例 ;( 2 )天然榴辉岩塑性变形机制是以位错蠕变为主 ;( 3 )根据实验成果比较榴辉岩和上地幔方辉橄榄岩流变学强度相当 ,两者耦合在大陆深俯冲 10 0km左右深度发生拆沉作用可能性很小 ,与上地幔上隆 (upwelling)作用有关的造山期后伸展作用对超高压岩石折返更具有重要意义 .  相似文献   

6.
在大别超高压变质带的双河地区存在一种特殊类型的榴辉岩,该类榴辉岩主要以似层状、条带状以及不规则透镜体赋存于大理岩中。矿物组成主要为石榴石、绿辉石以及少量的金红石、白云石、菱镁矿等。沿石榴石和绿辉石边缘常退变为角闪石+斜长石等,有的岩石完全退变为斜长角闪岩。激光拉曼和阴极发光综合分析表明,该类榴辉岩中的锆石可划分为两种类型:继承性碎屑锆石和变质锆石。继承性碎屑锆石十分少见,阴极发光图象具有明显的双层结构,即强发光的核和弱发光的边,核部和边部的包体矿物分别为Pl+Ap和Qtz+Pl。SHRIMP U-Pb定年结果表明。继承性碎屑锆石核部记录的207Pb/206Pb年龄为2701±15Ma,Th/U比值明显偏高为1.05,稀土元素配分模式显示重稀土明显富集,具有典型岩浆结晶锆石的特点;边部记录的207Pb/206Pb年龄为1801±12Ma-1753±22Ma,Th/U比值则明显偏低,为0.19-0.22之间,稀土元素配分模式显示重稀土相对平坦,具有典型变质锆石的特点。上述特征表明该类继承性碎屑锆石可能来源于太古代的基底,并经历了早元古代变质热事件的改造。新生的变质锆石无论是矿物包体还是阴极发光图象均与继承性碎屑锆石存在明显差异。有的变质增生锆石具有弱发光的核(阴极发光图象呈灰色)和强发光的边(阴极发光图象呈白色)。核部包体矿物组合为Qtz +Grt+Omp+Phe+Dol+Ap,具有典型石英榴辉岩相矿物组合特征,而边部则保存含柯石英的超高压包体矿物组合Coe+Grt +Omp+Mgs+Arg+Ap,表明该类锆石的核部和边部分别形成于俯冲进变质阶段和超高压变质阶段。另一部分变质增生锆石具有强发光的核(阴极发光图象呈白色)和弱发光的边(阴极发光图象呈黑色)。核部保存的标志性超高压包体矿物组合为Coe+Grt+Omp+Mgs+Arg+Ap,边部则保存Qtz+Cal等退变矿物组合,有的则缺乏矿物包体,表明该类锆石自超高压变质阶段开始生长,并经历了后期退变质作用的改造。从不同微区矿物包体组合的性质及其转变特征可以明显看出,自石英榴辉岩相进变质阶段到超高压峰期变质阶段存在下列转变反应:Qtz→Coe和Dol→Mgs+Arg;而自超高压峰期变质阶段到后期退变质阶段则存在下列退变反应:Coe→Qtz和Arg→Cal。SHRIMP U-Pb定年结果表明,含石英榴辉岩相矿物包体的锆石微区记录的206Pb/238U年龄为249-241Ma,加权平均值为244±4Ma,代表了深俯冲石英榴辉岩相进变质阶段的变质年龄;含柯石英等超高压矿物包体的锆石微区记录的206Pb/238U年龄为239-231Ma,加权平均值为234±3Ma,代表超高压阶段的峰期变质年龄;而含石英和方解石的退变边记录的206Pb/238U年龄为219-211Ma,加权平均值为216±6Ma,应代表后期折返阶段的角闪岩相退变质年龄。上述两类变质增生锆石微区的Th/U比值和稀土元素配分模式十分相似,Th/U比值变化于0.02- 0.18之间,稀土元素配分模式显示重稀土相对平坦,稀土元素总量明显低于继承性碎屑锆石,具有典型变质锆石的特点。根据锆石微区矿物包体的化学成分,采用Grt-Omp和Grt-Omp-Phe温压计,结合前人的变质反应实验资料的综合分析,确定榴辉岩的原岩在深俯冲过程的石英榴辉岩相进变质阶段的变质温压条件为T=588-668℃,P=1.7-1.8GPa;超高压峰期阶段的温压条件为T=784-849℃,P>5.5GPa;而构造折返过程中角闪岩相退变质阶段的温压条件为T=550-720℃,P=0.8~1.4GPa。由此可见,大别超高压变质岩的原岩——元古代(部分可能为太古代)的陆壳物质在早三叠纪发生俯冲至55- 60km深处,并经历了石英榴辉岩相变质作用。随后这些变质岩石继续深俯冲至165~175km的地幔深处,于中三叠纪发生了超高压变质作用,石英榴辉岩相矿物组合转变为超高压榴辉岩相矿物组合。最后这些超高压变质岩石发生构造折返,至晚三叠纪抬升到约30km的中下地壳深度,并经历了角闪岩相退变质作用的改造,超高压榴辉岩相矿物组合退变为角闪岩相矿物组合。由此推断,大别超高压变质带俯冲和折返速率分别为11-12km Myr-1和7.5-8.1km Myr-1。该项成果不仅确定了大别超高压变质地体的石英榴辉岩相进变质-超高压榴辉岩相峰期变质-角闪岩相退变质的年代谱系,而且对于重塑大别超高压变质地体的快速俯冲-折返的动力学模式有着重要的科学意义。  相似文献   

7.
Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) analyses have been performed on omphacite from ultra-high pressure (UHP) eclogites at the locality of Shima, Dabie Mountains, China. TEM reveals that the microstructures consist dominantly of dislocation substructures, including free dislocations, loops, tiltwalls, dislocation tangles and subboundaries. They were produced by high-temperature ductile deformation, of which the main mechanism was dislocation creep. Antiphase domain (APD) boundaries are common planar defects; an age of 470±6 Ma for UHP eclogite formation has been obtained from the equiaxial size of APDs in ordered omphacites from Shima, coincident with ages given by single-zircon U-Pb dating (471±2 Ma). HRTEM reveals C2/c and P2ln space groups in different parts of one single omphacite crystal, and no exsolution is observed in the studied samples, which is attributed to rapid cooling. It is suggested that the UHP eclogites underwent a long  相似文献   

8.
A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2  wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T  =610–660 °C and P =2.5–3.5  GPa (for X CO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions ( P >2.4  GPa, X CO<0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P – T  conditions of the amphibolitization stage are estimated at <0.9  GPa and <460 °C, and are similar to conditions recorded by the surrounding orthogneisses.  相似文献   

9.
Petrogenesis of Eclogites in the Light of PunctuatedMetamorphic Evolution in Dabie Terrane,China¥YouZhendong;HanYujing;ZhongZ...  相似文献   

10.
A transitional eclogite- to high-pressure granulite-facies paragenesis (Omp+Pl+Qtz±Grt) after peak coesite–eclogite facies metamorphism and predating the later amphibolite-facies overprint is identified in coesite–eclogite from the Taohang area of the Sulu ultrahigh-pressure (UHP) terrane in eastern China. These minerals were equilibrated at 17 kbar and 820°C. This reveals that fluid infiltration might activate retrograde recrystallisation even at a deep level during the exhumation process of the UHP rocks. The tectono-metamorphic significance of the unusually high pressure overprint is also discussed.  相似文献   

11.
Omphacite grains from UHP eclogite of the Dabie Mountains in eastern China are elongated and show strong lattice preferred orientations (LPOs). Observations by the transmission electron microscopy (TEM) identified not only structures of plastic deformation occurring as free dislocation, dislocation loops and dislocation walls, but also bubbles of water present in the deformed omphacite. The bubbles attach to the dislocation loops which are often connected to one another via a common bubble. Using infrared spectroscopy (IR), two types of hydrous components are identified as hydroxyl and free-water in the omphacite. An analysis of deformation mechanism of microstructure in omphacite suggests that the mineral deformed plastically under UHP metamorphic conditions by dislocation creep through hydrolitic weakening.  相似文献   

12.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

13.
超基性岩是苏鲁超高压变质地体中一类特殊且十分重要的岩石类型,它们通常呈规模不一的块状、条带状或不规则透镜状 (体) 赋存于区域大面积出露的花岗质片麻岩中。锆石中矿物包体激光拉曼测试、阴极发光图像分析和不同性质锆石LA-ICP-MS U-Pb定年等综合研究结果表明,北苏鲁威海地区含橄榄石辉石岩 (样品W1和W2) 中锆石的成因十分复杂,可进一步划分3种不同类型锆石。其中第一类锆石呈自形-半自形晶,阴极发光图像显示清晰的岩浆结晶环带,矿物包体主要为Ol+Cpx+Ap, 记录的207Pb/206Pb年龄为1835~1845Ma,应代表含橄榄石辉石岩的原岩形成时代;第二类为变质重结晶锆石,呈半自形-他形晶,阴极发光图像显示模糊的岩浆结晶环带,矿物包体与第一类完全一致,记录的206Pb/238U年龄变化范围大,为250~784Ma之间,表明部分继承性岩浆结晶锆石明显受到后期岩浆-变质热事件的影响而发生不完全重结晶和Pb丢失,进而使其记录的年龄相对偏新;第三类锆石呈他形晶,为典型的变质锆石,阴极发光图像十分均匀,矿物包体相对少见,主要为Grt+Cpx,记录的206Pb/238U年龄为230~234Ma, 且与苏鲁地体榴辉岩及其围岩中含柯石英锆石微区记录的超高压变质年龄 (225~235Ma) 十分一致,应代表含橄榄石辉石岩的峰期超高压变质时代。超基性岩中超高压变质锆石的准确识别表明苏鲁地体在峰期超高压变质阶段的确存在流体,流体的存在对超高压变质锆石的形成起着至关重要的作用。该项研究不仅准确厘定北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代,而且对于深入探讨苏鲁-大别超高压地体流体行为、演化规律及其水-岩相互作用机理具有重要的科学意义。  相似文献   

14.
The Shuanghe ultrahigh-pressure (UHP) slab in the Dabie Mountains consists of layered coesite-bearing eclogite, jadeite quartzite, marble and biotite gneiss, and is fault bounded against hosting orthogneiss. Representative assemblages of eclogite are Grt+Omp+Coe+Rt±Ky±Phn±Mgs; it formed at P>27 kbar and 680–720±50 °C. During exhumation, these UHP rocks experienced multistage retrograde metamorphism. Coesite was overprinted by quartz aggregates, phengite by biotite±muscovite and rutile by titanite. Garnet was successively replaced by a thin rim of Amp, Amp+Pl, and Amp+Ep±Bt+Pl (minor). Omphacite and kyanite were replaced by Amp+Pl±Cpx (or ±Bt) and by Zo+Pl+Ms±Mrg±Bt, respectively. Secondary calcite occurs as irregular pockets in some layers. An outcrop near the UHP slab border is composed of 20 thin, concordant layers of foliated eclogites, amphibolite and gneissic rocks of variable bulk composition. These layers exhibit mineral assemblages and textures transitional from less altered through extensively retrograded eclogite to gneissic rock of low-amphibolite facies through hydration, metasomatism and recrystallization. Retrograde metamorphism has caused oxygen and hydrogen isotope disequilibria between some of the minerals, but the fluid for retrograde reactions was internally buffered in the stable isotope compositions. Retrograde metamorphism of variable extent may be attributed to selective infiltration of retrograde fluids of CO2-rich and low-salinity aqueous, intensity of deformation and mineral resistance to alteration. The fluid phase for retrogression may have occurred either as discontinuous flow along grain boundaries in completely retrograded eclogites, and/or as isolated pockets in extensive or less altered eclogite layers.  相似文献   

15.
The occurrence,mineralogy and geochemistry of eclogites in the Mt.Dabie area show that they were subjected to a high-pressure metamorphism together with the country rocks,but their petrochemistry and REE geochemistry show some difference from those of the country rocks.The geochemical characteristics of the eclogites are similar to those of bot continental tholeiitic basalt and oceanic tholeiitic basalt.The rocks probably subducted to the upper mantle with the Dabie metamorphic complex.When elevated to the surface,they were subjected to different staes of retrogressive metamorphism.  相似文献   

16.
The Dabie UHP metamorphic belt, central China,contains two contrasting types of mafic-ultramafic complex. The Bixiling peridotite in the southern Dabie terrane contains abundant garnet (21.1-32.2 vol% )and thus has high CaO + Al2O3 (9.81-15.9 wt% ).  相似文献   

17.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

18.
In this study, we have deduced the thermal history of the subducting Neotethys from its eastern margin, using a suite of partially hydrated metabasalts from a segment of the Nagaland Ophiolite Complex (NOC), India. Located along the eastern extension of the Indus‐Tsangpo suture zone (ITSZ), the N–S‐trending NOC lies between the Indian and Burmese plates. The metabasalts, encased within a serpentinitic mélange, preserve a tectonically disturbed metamorphic sequence, which from west to east is greenschist (GS), pumpellyite–diopside (PD) and blueschist (BS) facies. Metabasalts in all the three metamorphic facies record prograde metamorphic overprints directly on primary igneous textures and igneous augite. In the BS facies unit, the metabasalts interbedded with marble show centimetre‐ to metre‐scale interlayering of lawsonite blueschist (LBS) and epidote blueschist (EBS). Prograde HP/LT metamorphism stabilized lawsonite + omphacite (XJd = 0.50–0.56 to 0.26–0.37) + jadeite (XJd = 0.67–0.79) + augite + ferroglaucophane + high‐Si phengite (Si = 3.6–3.65 atoms per formula unit, a.p.f.u.) + chlorite + titanite + quartz in LBS and lawsonite + glaucophane/ferroglaucophane ± epidote ± omphacite (XJd = 0.34) + chlorite + phengite (Si = 3.5 a.p.f.u.) + titanite + quartz in EBS at the metamorphic peak. Retrograde alteration, which was pervasive in the EBS, produced a sequence of mineral assemblages from omphacite and lawsonite‐absent, epidote + glaucophane/ferroglaucophane + chlorite + phengite + titanite + quartz through albite + chlorite + glaucophane to lawsonite + albite + high‐Si phengite (Si = 3.6–3.7 a.p.f.u.) + glaucophane + epidote + quartz. In the PD facies metabasalts, the peak mineral assemblage, pumpellyite + chlorite + titanite + phengitic white mica (Si = 3.4–3.5 a.p.f.u.) + diopside appeared in the basaltic groundmass from reacting titaniferous augite and low‐Si phengite, with prehnite additionally producing pumpellyite in early vein domains. In the GS facies metabasalts, incomplete hydration of augite produced albite + epidote + actinolite + chlorite + titanite + phengite + augite mineral assemblage. Based on calculated TM(H2O), T–M(O2) (where M represents oxide mol.%) and PT pseudosections, peak PT conditions of LBS are estimated at ~11.5 kbar and ~340 °C, EBS at ~10 kbar, 325 °C and PD facies at ~6 kbar, 335 °C. Reconstructed metamorphic reaction pathways integrated with the results of PT pseudosection modelling define a near‐complete, hairpin, clockwise PT loop for the BS and a prograde PT path with a steep dP/dT for the PD facies rocks. Apparent low thermal gradient of 8 °C km?1 corresponding to a maximum burial depth of 40 km and the hairpin PT trajectory together suggest a cold and mature stage of an intra‐oceanic subduction zone setting for the Nagaland blueschists. The metamorphic constraints established above when combined with petrological findings from the ophiolitic massifs along the whole ITSZ suggest that intra‐oceanic subduction systems within the Neotethys between India and the Lhasa terrane/the Karakoram microcontinent were also active towards east between Indian and Burmese plates.  相似文献   

19.
The Qinglongshan eclogites in the Southern Sulu ultrahigh pressure metamorphic (UHPM) terrane show very different retrograded textures from their counterparts in the Northern Sulu terrane, implying a different thermal history. Scanning electron and optical microscope observations indicate that the peak assemblage of the Qinglongshan eclogite is anhydrous, composed of Grt + OmpI + Rt + (Ky + coesite). These primary minerals were replaced by second and third stage minerals, resulting in symplectite pseudomorphs or coronas. The following relationships are inferred: OmpI → OmpII + Ab + Fe‐oxide symplectite (type I) and Rt → Rt + Ilm intergrowth; and, Ky → Pg, OmpII (+Pl) → Amp (+Pl) symplectite (type II), and Grt → Prg (+Fe‐oxide). Mineral chemistry and mass‐balance demonstrate that the pseudomorphed textures were developed by metasomatism involving dissolution and precipitation intensified by fluids along grain boundaries. The formation of symplectite type I produced Fe, Mg and Na but consumed Ca and Si. The Mg and Fe diffused to garnet where exchange of (Mg, Fe) with Ca of the garnet resulted in compositional zonation with decreased Ca towards the edge of garnet grains where Ca was consumed during symplectite formation. The replacement of kyanite by paragonite consumed the extra Na. In the later stage, fluid infiltration partially transformed symplectite type I to type II, and narrow rims of pargasite resorbed garnet from their boundaries. Mass balance suggests that the transformation and resorption would have been coupled during fluid infiltration. In the latest stage, epidote and quartz were precipitated at very late stage as a result of fluid activity along microfractures. Tentative P–T conditions based on mineral reactions and thermocalc software suggest that the retrograded eclogite did not record the granulite facies retrograde evolution characteristic of eclogites from the Northern Sulu terrane. The difference in retrograde evolution between the Southern and Northern Sulu eclogites suggests a different exhumation history.  相似文献   

20.
续海金  宋衍茹  叶凯 《岩石学报》2013,29(5):1594-1606
威海-荣成地区混合岩化花岗质片麻岩为研究超高压地体折返过程中的部分熔融提供了理想的窗口。本文通过对荣成地区鲍村花岗质片麻岩中浅色条带野外观察、岩相学以及锆石的CL图像、U-Pb定年、微量元素和Lu-Hf同位素的系统研究表明,鲍村花岗质片麻岩中的浅色条带为部分熔融的产物,其主要矿物组成为石英+斜长石+钾长石+黑云母。锆石CL图像显示清楚的核-边结构:继承岩浆核和新生岩浆边。继承核的206Pb/238U协和年龄为620±8~784±7Ma(Mean=701±33Ma);具有典型的岩浆锆石的微量元素特征,如重稀土(HREE)和Y富集,强烈的正Ce异常和负Eu异常,以及极低的(Gd/Lu)N和Hf/Y比值;εHf(t=700Ma)值为-13.0~-8.0(Mean=-10.9±0.8),相应的tDM2为2120~2429Ma(Mean=2303±51Ma)。新生边的206Pb/238U协和年龄为211±6~244±5Ma(226±10Ma);虽然微量元素的整体含量低于继承核,但也具有岩浆锆石的微量元素特征,如稀土元素配分模式显示HREE明显上翘的特征,正Ce异常和负Eu异常,以及极低的(Gd/Lu)N比值;εHf(t=225Ma)值为-17.3~-14.2(Mean=-15.2±0.6),相应的tDM2为2152~2347Ma(Mean=2214±33Ma)。上述特征表明,部分熔融的原岩是由古元古代(2.2~2.3Ga)的地壳物质在新元古代(701±33Ma)重熔而成,部分熔融可能发生在超高压地体折返早期的热折返阶段(榴辉岩相-高压麻粒岩相条件下),时代应为226±10Ma。威海-荣成混合岩化片麻岩内广泛发育的富含钾长石和石英的酸性岩脉(约220~210Ma),可能为折返晚期的角闪岩相冷凝阶段,部分熔融形成的熔体经历了结晶分异作用的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号