首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
An exploratory study was carried out at 22 sampling stations along the Langat River, Selangor in order to investigate on the vitality of cation exchange capacity (CEC) in sediment (0–5 cm). Parameters such as pH, Eh, salinity, and electrical conductivity (EC) were determined. The CEC in sediment has been calculated by the determination of Ca2+, Na+, Mg2+, and K+ using the flame atomic absorption spectrophotometer, while the organic matter content in sediment was ascertained using the loss on ignition method. The characteristic of the sediment shows that pH (3.09–7.46), salinity (0.02–10.71 ppt), EC (3.39–517 μS/cm) and Eh (?16.20–253.10 mV) were substantially high in variation. This study also revealed that exchangeable Ca2+ and Mg2+ were controlled by organic matter contents, while exchangeable Na+ and K+ were influenced by salinity. Salinity was observed to play a major part in controlling all the exchangeable cations, as it gives strong significant correlations with Na+, K+, Mg2+, CEC, and organic matter at p?<?0.01. The presence of seawater, clay mineralogy, and organic matter proves that it does play an important role in determining the CEC and soon relates to the pollution magnitude in the sediment.  相似文献   

2.
Quantifying Sediment Nitrogen Releases Associated with Estuarine Dredging   总被引:1,自引:0,他引:1  
Experimental studies of sediment pore water NH4 + chemistry, adsorbed NH4 + concentrations, sediment?Cwater NH4 + exchange and N2?CN flux were carried out to quantify the mass of labile N that can be released during large-scale dredging activities. Pore water NH4 + concentrations below 0.5-m sediment depth averaged 5 ± 2 mmol L?1 with average adsorbed NH4 + concentrations of 11 ??mol g?1. Elevated NH4 + concentrations found in rapidly accreting dredge channels are partly a result of the rapid advective burial of both reactive organic matter and pore water. Elutriate tests, a dilution of sediment with site water, yielded adsorbed NH4 + concentrations very similar to those using the more typical KCl extraction. Intact deep sediment sections exposed to overlying water, used to simulate postdredging conditions, showed high initial fluxes of ammonium and no development of coupled nitrification?Cdenitrification under the cold incubation conditions. Despite high concentrations and effluxes of NH4 + during dredging, the amount of NH4 + release during dredging was <0.5% of northern Chesapeake Bay sediment fluxes. The likelihood of large environmental effects of nitrogen release during the dredging of navigational channels in the Chesapeake Bay is low.  相似文献   

3.
Groundwater sampling was accomplished in the basaltic sequence of the Rh?n mountain range, Germany, in order to investigate hydrochemical groundwater evolution and to delineate mineral alteration reactions involved in natural weathering. The hydrochemical compositions of near-surface groundwaters indicate a Ca/Mg–HCO3 type with near-neutral pH and evolve to a Na–HCO3 type with high pH at greater depth. Column experiments were performed with basaltic and phonolitic rock samples to determine individual mineral alteration reactions. The basic reactions could be related to the alteration of olivine, Ca-pyroxene, plagioclase, pyrrhotite, and feldspathoids under formation of secondary clay minerals (smectites, illite) and goethite. The mineral alteration reactions deduced from the leaching experiments by inverse modelling were found to be consistent with the mineral reactions associated with the natural groundwaters. The reactions calculated for groundwater evolution involve the alteration of primary and secondary minerals to produce low-T mineral phase. The conversion of secondary Na-beidellite to illite occurs at a later stage of groundwater evolution, reducing the concentrations of K+ and Mg2+. Near-surface groundwaters do not indicate significant cation exchange. Initial cation exchange requires elevated pH values, with Mg2+ removed from solution preferred to Ca2+. Na-alkalisation of the groundwaters at greater depth suggests the exchange of Na+ for Mg2+ and Ca2+ on Na-beidellite, supported by cation exchange on coatings of iron hydroxides as alteration products. Among the mature high-pH groundwater at greater depth, the dissolution of anorthite and albite has significant effect on groundwater composition.  相似文献   

4.
Experimental evidence and stochastic studies strongly show that the transport of reactive solutes in porous media is significantly influenced by heterogeneities in hydraulic conductivity, porosity, and sorption parameters. In this paper, we present Monte Carlo numerical simulations of multicomponent reactive transport involving competitive cation exchange reactions in a two-dimensional vertical physically and geochemically heterogeneous medium. Log hydraulic conductivity, log K, and log cation exchange capacity (log CEC) are assumed to be random Gaussian functions with spherical semivariograms. Random realizations of log K and log CEC are used as input data for the numerical simulation of multicomponent reactive transport with CORE2D, a general purpose reactive transport code. Longitudinal features of the fronts of reactive and conservative species are computed from the temporal and spatial moments of depth-averaged concentrations. Monte Carlo simulations show that: (1) the displacement of reactive fronts increases with increasing variance of log K, while it decreases with the variance of log CEC; (2) second-order spatial moments increase with increasing variances of log K and log CEC; (3) uncertainties in the mean arrival time are largest (smallest) for negatively (positively) correlated log K and Log CEC; (4) cations undergoing competitive cation exchange exhibit different apparent velocities and retardation factors due to both physical and geochemical heterogeneities; and (5) the correlation between log K and log CEC affects significantly apparent cation retardation factors in heterogeneous aquifers.  相似文献   

5.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

6.
Among numerous methods for cation exchange capacity (CEC) determination for soils and sediments, the cobaltihexamine chloride method is frequently used due to its ability to measure CEC at soil pH. After exchange with Co(NH3)63+ ions, CEC is estimated via the measurement of the Co remaining in solution. The modified method proposed allows a more rapid determination of CEC based on the measurement of the absorbance at 472 nm of the cobaltihexamine chloride solution before and after exchange. This method has been applied to various soil's horizons from four sites, selected to cover a wide range of CEC and pH values. The model obtained allows one to calculate CEC from absorbance at 472 nm with 95% confidence intervals. As CEC is of relevant meaning in agronomical and environmental purposes, and more recently in ecotoxicological studies, this modified method can be proposed as a rapid test for CEC evaluation.  相似文献   

7.
McMurdo dry valleys of Antarctica represent the largest of the ice-free areas on the Antarctic continent, containing glaciers, meltwater streams, and closed basin lakes. Previous geochemical studies of dry valley streams and lakes have addressed chemical weathering reactions of hyporheic substrate and geochemical evolution of dry valley surface waters. We examine cation transport and exchange reactions during a stream tracer experiment in a dry valley glacial meltwater stream. The injection solution was composed of dissolved Li+, Na+, K+, and Cl-. Chloride behaved conservatively in this stream, but Li+, Na+, and K+ were reactive to varying degrees. Mass balance analysis indicates that relative to Cl-, Li+ and K+ were taken up in downstream transport and Na+ was released. Simulations of conservative and reactive (first-order uptake or generation) solute transport were made with the OTIS (one-dimensional solute transport with inflow and storage) model. Among the four experimental reaches of Green Creek, solute transport simulations reveal that Li+ was removed from stream water in all four reaches, K+ was released in two reaches, taken up in one reach, and Na+ was released in all four reaches. Hyporheic sediments appear to be variable with uptake of Li+ in two reaches, uptake of K+ in one reach, release of K+ in two reaches, and uptake of Na+ in one reach. Mass balances of the conservative and reactive simulations show that from 1.05 to 2.19 moles of Li+ was adsorbed per reach, but less than 0.3 moles of K+ and less than 0.9 moles of Na+ were released per reach. This suggests that either (1) exchange of another ion which was not analyzed in this experiment or (2) that both ion exchange and sorption control inorganic solute transport. The elevated cation concentrations introduced during the experiment are typical of initial flows in each flow season, which flush accumulated dry salts from the streambed. We propose that the bed sediments (which compose the hyporheic zone) modulate the flushing of these salts during initial flows each season, due to ion exchange and sorption reactions.  相似文献   

8.
The 2-site protolysis no electrostatics surface complexation and cation exchange (2SPNE/CE) model used in previous work to model the sorption of Ni and Zn on Na- and Ca-montmorillonites was applied to sorption edges and isotherms measured for Eu on these two montmorillonite forms. The aim was to further test the applicability of the sorption model on a trivalent element with a more complex aqueous chemistry. An additional reason for choosing Eu was that it is considered to be a good chemical analogue for other lanthanides and trivalent actinides. With site types, site capacities, and protolysis constants fixed at the values in the Ni/Zn studies, all of the measured sorption edge data could be modelled using cation exchange and the monodentate surface species, ≡SSOEu2+, ≡SSOEuOH+ and ≡SSOEu(OH)3, on the strong site type. However, an additional modelling study showed that the same data were almost equally well described by considering bidentate surface complexes, (≡SSO)2Eu+ and (≡SSO)2Eu(OH)2, and cation exchange. To model the sorption isotherm measurements up to pH = 7.2, only one additional weak site surface complex was required, ≡SW1OEu2+ for the monodentate case and (≡SW1O)2Eu+ for the bidentate case. Selectivity coefficients are given for Eu3+- Ca2+ and Eu3+- Na+ exchange on the planar sites and surface complexation constants for monodentate and bidentate Eu surface species on the edge sites of montmorillonite.  相似文献   

9.
Secondary reactions occurring in pyrite-containing sediments from open cut coal mines are complex and not fully understood. In this study, the changes in seepage water composition in a column experiment with a sediment containing pyrite (5.6 g kg−1) were evaluated using a chemical equilibrium model. A column experiment with artificial irrigation (730 mm water yr−1) was carried out for 2 yr with a sediment from the open pit mine Garzweiler, Germany, at the Institute of Applied Geology. Tracer (LiCl) was added to the sediment. Seepage water composition at 52 cm depth was sampled weekly. Redox potential and the water potential were also recorded weekly. Sulphate and Fe(II) were the dominant ions in the seepage water with concentration maxima of 500 and 350 mmol l−1 after 50 days (0.7 pore volumes (PV)). Minimum pH values were around 0.8 after 100 days (1.4 PV), but increased subsequently and reached 2.4 after 700 days (9.5 PV). Ion activity product calculations indicated the intermediate formation of gypsum (19th–480th day of the experiment). Solutions were undersaturated with respect to alunite, jarosite, jurbanite, schwertmannite, melanterite, gibbsite and goethite during the whole experiment. The model of coupled equilibria which included inorganic complexation, precipitation/dissolution of gypsum and multiple cation exchange was tested. Pyrite oxidation and pH-dependent silicate weathering were considered using simple input functions. Transport was modelled using a field capacity cascade submodel. Model results showed satisfactory agreement with measured values for pH and concentrations of SO4, Fe, Mg, Ca and Al. Correlation coefficients lay between 0.7 and 0.9 and linear regression coefficients (modelled against measured) were 1.5 (Ca), 1.0 (Fe, SO4), 0.8 (Mg), 0.7 (pH) and 0.6 (Al). The results showed that the protons produced during pyrite oxidation (94 mmolc H+ kg−1) were mainly released into seepage water (as HSO4 and H+). Cation exchange reactions buffered 20 mmolc of H+ kg−1 sediment, and Al released by silicate weathering accounted for 3.6 mmolc H+ kg−1. Modelling was useful to further understand the significance of different pH buffer reactions.  相似文献   

10.
The evolution of groundwater chemistry along the direction of groundwater flow was studied using hydrochemical data from samples collected along a flow line in the Neogene Aquifer, Belgium. Infiltrating water was found to have a very low mineral content and low pH because the sediments are strongly decalcified. Increasing SiO2 and cation concentrations along the groundwater flow line indicate silicate-weathering processes, confirmed with the aid of saturation indices, calculated with PHREEQC, and stability diagrams. A classification system based on redox sensitive species was developed and shows that an extensive redox sequence is present in the aquifer. At a shallow depth, pyrite oxidation has caused an increase in sulphate, while iron is precipitated as hydroxides. Elevated arsenic concentrations are related to the reduction of these iron hydroxides at a relatively shallow depth and to the dissolution of siderite at greater depth. Dissolution of carbonate in the aquifer material, present in deep layers and to the north, has lead to increased Ca2+ and HCO3 ? concentrations. The Ca2+ from the groundwater is exchanged for Na+, Mg2+ and K+ adsorbed to the clay surfaces at the bottom of the groundwater reservoir. Although the Neogene Aquifer is well flushed, there are still some marine influences present in the deepest parts.  相似文献   

11.
Exchange reactions between Ca2+, H+ and Al species and their effects on the aluminium mobility in two Chinese acidic forest soils were studied. The study was based on a batch experiment using extractant solutions with different base cation (calcium) concentrations and pH. The experimental data showed that increased Ca2+ concentrations increased the release of soil hydrogen—and aluminium ions, especially from the more acid soil. In agreement with a cation exchange process, the treatment with Ca2+ extracts gave significantly decreased soil aluminium saturation (AlS) and increased calcium saturation (CaS) on the ion exchanger. Geochemical calculation using AlCHEMI program showed that activities of Al3+ in the extracts were all strongly under-saturated with respect to any gibbsite mineral in the studied pH region (i.e. below 4.1). There were instead apparently two different mechanisms controlling the activities of Al3+ in extracts. At pH between about 4.1 and 3.7, the Al3+ activity did not change significantly with pH. This is especially the case in the more acid soil. Apparently there are no sizeable pools available to release Al in this pH region. At pH below 3.7 (induced by higher Ca2+concentration) the activity of Al3+ increased with H+ though not in a pattern that complies with a gibbsite solubility control. An increase of base cation deposition would therefore mainly enhance the release of hydrogen ions between pH 4.1 and 3.7 and aluminium ions below pH 3.7 from Chinese mature acidic soils. This will cause an increased acidity of soil water in the short term and a decrease in the soil acidity in the long term. More attention should be paid to this fact in Chinese acid rain studies and control options.  相似文献   

12.
13.
Nuclear waste that bore 90Sr2+ was accidentally leaked into the vadose zone at the Hanford site, and was immobilized at relatively shallow depths in sediments containing little apparent clay or silt-sized components. Sr2+, 90Sr2+, Mg2+, and Ca2+ was desorbed and total inorganic carbon concentration was monitored during the equilibration of this sediment with varying concentrations of Na+, Ca2+. A cation exchange model previously developed for similar sediments was applied to these results as a predictor of final solution compositions. The model included binary exchange reactions for the four operant cations and an equilibrium dissolution/precipitation reaction for calcite. The model successfully predicted the desorption data. The contaminated sediment was also examined using digital autoradiography, a sensitive tool for imaging the distribution of radioactivity. The exchanger phase containing 90Sr was found to consist of smectite formed from weathering of mesostasis glass in basaltic lithic fragments. These clasts are a significant component of Hanford formation sands. The relatively small but significant cation exchange capacity of these sediments was thus a consequence of reaction with physically sequestered clays in sediment that contained essentially no fine-grained material. The nature of this exchange component explained the relatively slow (scale of days) evolution of desorption solutions. The experimental and model results indicated that there is little risk of migration of 90Sr2+ to the water table.  相似文献   

14.
Effect of some additives on synthesis of zeolite from coal fly ash   总被引:3,自引:0,他引:3  
Hydrothermal conversion of fly ash into zeolites was conducted and the effects of the addition of sodium halide and waste solutions produced after zeolitization of fly ash, as well as the adjustment of the Si/Al ratio prior to synthesis process on the formation and cation exchange capacity (CEC) of zeolite product were evaluated. Both the addition of NaCl and NaF ameliorated the crystallinity and CEC of synthesized zeolite, but NaF had a better improvement effect. Na+ was considered to enhance the crystallization of zeolite, while F favored the dissolution of fly ash. The type of zeolite formed depended on the Si/Al ratio of the starting material prior to the nucleation and crystallization of zeolite. The adjustment of the Si/Al ratio of fly ash by addition of Na2SiO4 and Al(OH)3 changed the type and CEC of zeolite. Waste solutions contained large amount of Si and little Al due to the formation of a zeolite named NaP1 in zeolite terminology with the Joint Committee of Powder Diffraction Standard (JCPDS) code of 39-0219. The alkalinity decreased largely. As a result, the CEC value of zeolite products synthesized with waste solution as alkali source decreased. The supplementation of new alkali to adjust the alkalinity of waste solution could enhance the CEC of synthesized product. It was concluded that: (1) addition of sodium halide and adjustment of the Si/Al ratio prior to synthesis can improve the quality of zeolite; (2) waste solutions produced following the zeolitization of fly ash can be reused as an alkali source in the activation of fly ash; zero-emission of waste solution in the synthesis of zeolite from fly ash is possible.  相似文献   

15.
《Geochimica et cosmochimica acta》1999,63(19-20):3217-3227
A natural illite (illite du Puy) was purified and converted to the homo-ionic Na form. The conditioned Na–illite was characterised in terms of its mineralogy, chemical inventory, and surface properties. The structural formula was determined from EDS analyses (SEM/TEM) and bulk chemistry. A cation exchange capacity of 127 mEq/kg was determined by the Na isotope dilution method at neutral pH.The sorption of Cs was measured as a function of NaClO4 background electrolyte concentration (1.0, 0.1 and 0.01 M), Cs concentration and pH in the range ≈3 to ≈10. Before obtaining these measurements the kinetics of Cs uptake were determined at initial concentrations of 2 × 10−8 M and 7 × 10−5 M, representing the extremes of the range investigated, and was found to be concentration dependent. The supernatant solutions after centrifugation were analysed for major cations in all of the sorption tests.A two-site cation exchange model was developed to describe the sorption of Cs over the whole range of experimental conditions. The two-site types were termed frayed edge sites, FES (high affinity/low capacity) and type II sites (low affinity/high capacity). At low NaClO4 concentrations, Cs sorption decreased at pH values less than neutral. This was interpreted in terms of competitive effects from H, and K released by the partial dissolution of illite, which cannot be avoided at low and high pH values. Selectivity coefficient values for Cs–Na, Cs–K, K–Na, and H–Na exchange equilibria on the FES sites, and Cs–Na exchange on the type II sites are given for illite together with the corresponding site capacities.  相似文献   

16.
The adsorption of copper and cobalt from aqueous solution on to illite and other substrates has been studied as a function of pH, solution composition and solid phase concentration. The results are interpreted in terms of a model whereby the trace metals are adsorbed in exchange for surface bound H+ ions. Adsorption varies with solution ionic strength and the concentrations of complex forming ligands; both of these parameters tend to reduce the trace metal adsorption. The Cu2+ is two orders of magnitude more reactive toward solid surfaces than Co2+ , which is consistent with the general reactivities of these two metal ions. It is also found that Mg2+ interferes with adsorption, presumably by competing with the trace metals for the surface sites. A quantitative model was developed which describes adsorption of these metals from natural waters ranging from river water to sea water as a function of pH, complexing ligands and magnesium activity.  相似文献   

17.
The Precambrian Egersund anorthosites exhibit a wide range of groundwater chemical composition (pH 5.40-9.93, Ca2+ 1.5-41 mg/L, Na+ 12.3-103 mg/L). They also exhibit an evolutionary trend, culminating in high pH, Na-rich, low-Ca groundwaters, that is broadly representative of Norwegian crystalline bedrock aquifers in general. Simple PHREEQC modelling of monomineralic plagioclase-CO2-H2O systems demonstrates that the evolution of such waters can be explained solely by plagioclase weathering, coupled with calcite precipitation, without invoking cation exchange. Some degree of reaction in open CO2 systems seems necessary to generate the observed maximum solute concentrations, while subsequent system closure can be invoked to explain high observed pH values. Empirical data provide observations required or predicted by such a model: (i) the presence of secondary calcite in silicate aquifer systems, (ii) the buffering of pH at around 8.0-8.3 by calcite precipitation, (iii) significant soil gas CO2 concentrations (PCO2 > 10−2 atm) even in poorly vegetated sub-arctic catchments, and (iv) the eventual re-accumulation of calcium in highly evolved, high pH waters.  相似文献   

18.
19.
In environmental studies, it is necessary to be able to predict the behaviour of contaminants in more or less complex physico-chemical contexts. The improvement of this prediction partly depends on establishing thermodynamic models that can describe the behaviour of these contaminants and, in particular, the sorption reactions on mineral surfaces. In this way, based on the mass action law, it is possible to use surface complexation models and ion exchange models. Therefore, the aim of this study is (i) to develop an ion-exchange model able to describe the sorption of transition metal onto pure clay minerals and (ii) to test the ability of this approach to predict the sorption of these elements onto natural materials containing clay minerals (i.e. soils/sediments) under various chemical conditions. This study is focused on the behaviour of Zn(II) in the presence of clayey sediments. Considering that clay minerals are cation exchangers containing multiple sorption sites, it is possible to interpret the sorption of Zn(II), as well as competitor cations, by ion-exchange equilibria with the clay minerals. This approach is applied with success to interpret the experimental data obtained previously in the Zn(II)–H+–Na+–montmorillonite system. The authors’ research team has already studied the behaviour of Na+, K+, Ca2+ and Mg2+ versus pH in terms of ion exchange onto pure montmorillonite, leading to the development of a thermodynamic database including the exchange site concentrations associated with montmorillonite and the selectivity coefficients of Na+, K+, Ca2+, Mg2+, and Zn2+ versus H+.  相似文献   

20.
The redox properties of FeII adsorbed onto a series of FeIII (oxyhydr)oxides (goethite, lepidocrocite, nano-sized ferric oxide hydrate (nano-FOH), and hydrous ferric oxide (HFO)) have been investigated by rest potential measurements at a platinum electrode, as a function of pH (−log10[H+]) and surface coverage. Using the constant capacitance surface complexation model to describe FeII adsorption onto these substrates, theoretical values of the suspension redox potential (EH) have been computed, under the assumption that FeII adsorption occurs at crystal growth sites of the substrate surface. Good agreement between calculated and experimental EH values is observed for nano-FOH and HFO, however the redox potentials measured for lepidocrocite and goethite are significantly more oxidizing than predicted. Mössbauer spectroscopic analysis of 57FeII adsorbed onto HFO and goethite shows that in both cases the adsorbed 57FeII is incorporated into the crystal structure of the substrate, in broad agreement with the thermodynamic model, but is almost completely oxidized to 57FeIII. The mechanism by which the adsorbed 57FeII is oxidized is not resolved in this work, but is thought to be due to electron transfer to the substrate, rather than a net oxidation of the suspension. The disagreement between experimental and calculated rest potential measurements in the goethite and lepidocrocite systems is thought to be due to the poor electrochemical equilibration of these suspensions with the platinum electrode, rather than a failure of the thermodynamic model. The model developed for the redox potential of adsorbed FeII allows direct assessment of the reactivity of this species towards oxidized pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号