首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L.J. Martin 《Icarus》1974,23(1):108-115
The two largest Martian dust storms on photographic record occurred during the past two apparitions. The general characteristics of these events are compared using the hourly photography from the International Planetary Patrol. Dust storms are believed to be seasonal events on Mars, and therefore both storms had been predicted, but both turned out to be larger than expected, since they were each more extensive than the famous 1956 storm.The 1971 storm was much larger than the 1973 storm in both intensity and duration, although the 1973 storm had a more rapid initial expansion. Both storms began in the southern hemisphere but the 1973 storm began later (during summer, nearly three months beyond perihelion). The 1971 storm lasted approximately twice as long as the 1973 storm.Maps of the first nine days of both storms are presented to facilitate a comparison of their initial outbreaks and growth. Graphs of changes in contrast of albedo features during the 1973 storm are based on microdensitometer tracings of Planetary Patrol photographs.The frequency and regularity of storms of this size are uncertain because of the lack of comprehensive photographic observation during past apparitions. Identification and evaluation of such events in the future requires the continuation of well-coordinated worldwide observing efforts.  相似文献   

2.
A time-sequential set of bolometric albedo maps for Mars has been constructed from Viking Infrared Thermal Mapper data. The maps provide global coverage in longitude for latitudes -60° to +60° at 1° by 1° spatial resolution. Individual maps are constructed under strict geometric constraints for a narrow range of Ls. The set of albedo maps spans a Martian year and includes maps before, during, and after the global dust storms of 1977. Transient brightenings associated with local dust storms or condensate clouds are apparent in some of the maps. During dust-free periods, bolometric albedo maps are generally similar to classical, visual albedo map of Mars. The distribution of bolometric surface albedos is bimodal with typical, clear-sky, Lambert albedos of 0.27 and 0.16 for bright and dark areas, respectively. Atmospheric effects strongly influence apparent surface albedos, especially for dark areas. Neither bright nor dark regions show measurable, long-term variations of bolometric albedos during clear periods.  相似文献   

3.
The residual south polar cap of Mars (RSPC) is distinct from the residual north polar cap both in composition and in morphology. CO2 frost in the RSPC is stabilized by its high albedo during southern spring and summer despite the relatively large insolation during that period. The morphology of the RSPC in summer displays a bewildering variety of depressions that are formed in relatively thin layers of CO2. The increase of the size of these depressions between each of the first three years of Mars Global Surveyor (MGS) observations may possibly signal some sort of climate change on the planet. For example, the erosion of the bright plateaus might reduce the RSPC albedo and affect the energy balance. The Mars Orbiter Cameras (MOC) on MGS observed Mars for four consecutive martian years before contact with the spacecraft was lost in late 2006. During this period coverage of the polar regions was particularly dense because MGS flew over them on every orbit. In this paper we report on the four-year behavior of the morphological features in the RSPC and on the large-scale variability in RSPC albedo over the period. The changes in the size of the surface features in the RSPC due to backwasting that were first observed between Mars years (MY) 24 and 25 and subsequently between MY25 and M26 was observed to continue at the same rate through MY 27. The results indicate that on average thicker layers in the RSPC retreat faster than thinner ones, roughly in proportion to their thickness. We argue that a simple difference in porosity between the A and B layers can explain this difference although other factors could be involved. The large-scale albedo of the RSPC decreases as the depressions are uncovered by sublimation of seasonal CO2. However, any interannual differences in albedo due to the backwasting process are masked by interannual differences in the summer dust opacity in the RSPC region.  相似文献   

4.
Charles F. Capen 《Icarus》1974,22(3):345-362
A short-term yellow cloud was observed in the southern hemisphere of Mars from July 10 to 22, 1971. The initial cloud was first photographed on the morning limb at 7:45am local Martian sun time in the Serpentis-Hellespontus region (315°W; 27°S), 74 Earth days (72 Martian days) prior to the onset of the September major yellow storm. Historical observations from the Lowell Observatory archives indicate that prestorm yellow clouds of limited extent are not uncommon.Positional measurement and photographic differential photometry of the July yellow cloud were possible throughout its entire evolution because Mars was favorably situated and photographic coverage by the International Planetary Patrol was adequate. Maps showing the cloud's initial location, hourly and diurnal behavior, apparent motion, and areal coverage by haze are presented. The similarities between the July cloud and other southern hemisphere yellow clouds are summarized. Its relationships to classical albedo features and Mariner 9 topographic data are discussed. Photographic photometry indicates that the enhanced contrast between the yellow cloud and its surroundings is probably due more to the brightening of the cloud-covered areas than to any darkening of contiguous areas.  相似文献   

5.
Terry Z. Martin 《Icarus》1981,45(2):427-446
A Mars average data set (MADS) has been constructed from thermal and albedo measurements of the Viking Infrared Thermal Mapper; by merging information from all longitudes; and, ensuring reasonably complete longitudinal sampling, a representation of mean Mars behavior is obtained. Brightness temperatures at 7, 9, 11, 15, and 20 μm and albedo information in the band 0.3–3.0 μm have been binned using 2° latitude strips, 24 times of day, 3 emission angle intervals, and 23 nonoverlapping Ls periods covering 1.43 Mars years starting at Ls = 84°. The MADS is ideally suited to parametric study of latitudinal, diurnal, angular, and seasonal dependences. Data are presented for surface thermal and albedo behavior in clear and dusty atmospheric conditions; the thermal response of the atmospheric temperature to a major dust storm is found to be consistent with Mariner 9 data from the 1971 storm. Examples of use of the MADS, which is available through the Mars Consortium, indicate how averaged data reveal specific surface and atmospheric phenomena.  相似文献   

6.
Surface materials exposed throughout the equatorial region of Mars have been classified and mapped on the basis of spectral reflectance properties determined by the Viking II Orbiter vidicon cameras. Frames acquired at each of three wavelengths (0.45 ± 0.03 μm, 0.53 ± 0.05 μm, and 0.59 ± 0.05 μm) during the approach of Viking Orbiter II in Martian summer (Ls = 105°) were mosaicked by computer. The mosaics cover latitudes 30°N to 63°S for 360° of longitude and have resolutions between 10 and 20 km per line pair. Image processing included Mercator transformation and removal of an average Martian photometric function to produce albedo maps at three wavelengths. The classical dark region between the equator and ~30°S in the Martian highlands is composed of two units: (i) and ancient unit consisting of topographic highs (ridges, crater rims, and rugged plateaus riddled with small dendritic channels) which is among the reddest on the planet (0.59/0.45 μm ? 3); and (ii) intermediate age, smooth, intercrater volcanic plains displaying numerous mare ridges which are among the least red on Mars (0.59/0.45 μm ? 2). The relatively young shield volcanoes are, like the oldest unit, dark and very red. Two probable eolian deposits are recognized in the intermediate and high albedo regions. The stratigraphically lower unit is intermediate in both color (0.59/ 0.45 μm ? 2.5) and albedo. The upper unit has the highest albedo, is very red (0.59/0.45 μm ? 3), and is apparently the major constituent of the annual dust storms as its areal extent changes from year to year. The south polar ice cap and condensate clouds dominate the southernmost part of the mosaics.  相似文献   

7.
The Mars Orbiter Laser Altimeter (MOLA), functioning as a high-resolution radiometer, has observed several appearances of the Martian residual ice caps. We examine these data to quantify both seasonal behavior and interannual differences. The northern residual cap (NRC) was found to be mostly stable with the exception of one, previously identified, region of strong variability. Interannual change in the extent of the NRC appears to be small and reversible on timescales of 1 or 2 years. The NRC has an elaborate seasonal evolution of albedo. Annuli of fine-grained CO2 and water frost, which track the inner and outer edges of the seasonal CO2 cap, cause large temporary brightenings. The NRC albedo is stable from just after solstice to Ls 150°, after which albedo decreases steadily. This late-summer darkening can be explained by shadowing within the rough topography of the NRC, leading to a lower limit on topographic relief of 80 cm. The southern residual cap (SRC) appears stable in extent. As has been previously discovered, its seasonal frost albedo behavior appears to be correlated with insolation. However, residual CO2 appears not to share this characteristic; we use this behavioral difference to infer net deposition of CO2 ice on the SRC during 1 out of 3 years. Uncharacteristically, the SRC abruptly darkens at Ls 320° in 1 Martian year (year beginning April 2002). Circumstantial evidence suggests atmospheric scattering by dust is responsible. The 2001 global dust-storm appears, either, to have had no effect on the polar cap albedos, or, resulted in slightly brighter ice deposits.  相似文献   

8.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

9.
A climate model of intermediate complexity, named the Mars Climate Simulator, has been developed based on the Portable University Model of the Atmosphere (PUMA). The main goal of this new development is to simulate the climate variations on Mars resulting from the changes in orbital parameters and their impact on the layered polar terrains (also known as permanent polar ice caps). As a first step towards transient simulations over several obliquity cycles, the model is applied to simulate the dynamical and thermodynamical response of the Martian climate system to different but fixed obliquity angles. The model is forced by the annual and daily cycle of solar insolation. Experiments have been performed for obliquities of φ=15° (minimum), φ=25.2° (present), and φ=35° (maximum). The resulting changes in solar insolation mainly in the polar regions impact strongly on the cross-equatorial circulation which is driven by the meridional temperature gradient and steered by the Martian topography. At high obliquity, the cross-equatorial near surface flow from the winter to the summer hemisphere is strongly enhanced compared to low obliquity periods. The summer ground temperature ranges from 200 K (φ=15°) to 250 K (φ=35°) at 80°N in northern summer, and from 220 K (φ=15°) to 270 K (φ=35°) at 80°S in southern summer. In the atmosphere at 1 km above ground, the respective range is 195-225 K in northern summer, and 210-250 K in southern summer.  相似文献   

10.
The time evolution of atmospheric dust at high southern latitudes on Mars has been determined using observations of the south seasonal cap acquired in the near infrared (1-2.65 μm) by OMEGA/Mars Express in 2005. Observations at different solar zenith angles and one EPF sequence demonstrate that the reflectance in the 2.64 μm saturated absorption band of the surface CO2 ice is mainly due to the light scattered by aerosols above most places of the seasonal cap. We have mapped the total optical depth of dust aerosols in the near-IR above the south seasonal cap of Mars from mid-spring to early summer with a time resolution ranging from one day to one week and a spatial resolution of a few kilometers. The optical depth above the south perennial cap is determined on a longer time range covering southern spring and summer. A constant set of optical properties of dust aerosols is consistent with OMEGA observations during the analyzed period. Strong variations of the optical depth are observed over small horizontal and temporal scales, corresponding in part to moving dust clouds. The late summer peak in dust opacity observed by Opportunity in 2005 propagated to the south pole contrarily to that observed in mid spring. This may be linked to evidence for dust scavenging by water ice-rich clouds circulating at high southern latitudes at this season.  相似文献   

11.
This work identifies and describes features of the changing seasonal frost-covered surface of Mars based on HiRISE images, and analyses the possibility that ephemeral liquid brine formation produces them. Because some of these dark features show flow-like appearance, and salts on Mars are present, liquid brines might be also present, possibly accounting for the changing droplet-like features on the Phoenix lander.We observed in-situ darkening and movement of dark features (or movement of the darkening front) on seasonal frost-covered polar dunes. Darkening and brightening may happen within several meters from each other during local spring. Darkening always starts from the bottom and moves up, while brightening progresses from top and moves toward the bottom between the small dune ripples. Brightening occurs during the springtime warming on time scales of several days close to the sites of darkening; therefore, dark material falling from the air, and refreezing of bright ice on it, does not adequately explain the observations. Interpreting the observations as brine-related melting or refreezing also poses problems, but because brine may engulf salt grains or ice blocks, phase changes here could be influenced by factors other than temperature values, and could produce the observations.Analysis of absolute albedo changes indicates that the flow-like features are the darkest at their lower frontal end, sometimes darker than the dark spot from which they originate. A bright halo (white collar) also forms around these spots, possibly due to refreezing. Inside the observed larger spots an outer gray area surrounds the central darkest cores, which is about 10 cm lower than the surrounding bright CO2 ice. At those places, most or all of the CO2 ice deposited earlier has disappeared, and H2O ice is present. Observations of dark flow features moving on the top of this H2O rich layer suggest even if the flow features start as dry dune avalanches of rolling grains, their dark material heated by solar insolation is in contact with H2O ice and may produce brines.  相似文献   

12.
Edwin S. Barker 《Icarus》1976,28(2):247-268
The patrol of Martian water vapor carried out with the echelle-coudé scanner at McDonald Observatory during the 1972–1974 apparition has produced 469 individual photoelectric scans of Doppler-shifted Martian H2O lines. Almost an entire Martian year was covered during the 1972–1974 period (Ls = 118?269° and 301?80°). Three types of coverage have been obtained: (1) regular—the slit placed pole to pole on the central meridian; (2) latitudinal—the slit placed parallel to the Martian equator at various latitudes; (3) diurnal—the slit placed parallel to the terminator at several times during a Martian day measured from local noon.Both the seasonal and diurnal effects seem to be controlled by the insolation and not the local topography with respect to the 6.1 mb surface. A slight negative correlation with elevation was noted which improved during the seasons of greater H2O content. The previous seasonal behavior has been confirmed and amplified. The following are the primary conclusions: (1) The planetwide abundance is low (5?15 μm of ppt H2O) during both equinoctical periods. (2) The maximum abundance of about 40 μm occurs in each hemisphere after solstice at about 40° latitude in that hemisphere. (3) The latitude of the maximum amount in the N-S distribution precedes the latitude of maximum insolation by 10–20° of latitude. (4) During the “drier” seasons (5–20 μm) near the equinoxes on Mars, the atmospheric water vapor changes by a factor of 2–3x over a diurnal cycle with the maximum near local noon. (5) The effects of the 1973 dust storm during the southern summer reduced the amount of water vapor over the southern hemisphere regions to 3–8 μm.  相似文献   

13.
Peter M. Woiceshyn 《Icarus》1974,22(3):325-344
The Mariner 9 S-band radio occultation measurements, which were taken over half a Martian year, were examined for seasonal variations in atmospheric pressures and temperatures. Seasonally related atmospheric pressure oscillations on a global scale were discovered when the pressures were compared on equi-potential levels. There was a global increase in pressure of about 13% between northern winter and spring seasons, and a global decrease in pressure of nearly 14% between northern spring and summer seasons. The maximum global pressure occurred during the northern spring season approximately one Martian month prior to aphelion. These pressure oscillations were correlated with the seasonal growth and decay, and the total area of the polar caps.Temperatures in the mid-latitude regions near the subsolar points were highest during the northern winter season when Mars was closest to the sun. In addition, high latitudinal temperature gradients (up to 2°K per degree latitude) were found. This has important atmospheric dynamical implications, especially for the growth of baroclinic waves.Occultation observations also indicated that the average elevation of the southern hemisphere was nearly 4km higher than the northern hemisphere when referenced to an equipotential level. The occultation measurements showed that the atmospheric pressures near the surface in the southern hemisphere were 33 to 43% lower than the atmospheric pressures near the surface in the northern hemisphere. In addition to other parameters, the asymmetry in the density of the Martian atmosphere and the hemispheric altitude differences are important in understanding the seasonal dynamic processes that exist in the polar cap regions and in the Martian atmosphere generally.  相似文献   

14.
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.  相似文献   

15.
Over the last few decades, General Circulation Models (GCM) have been used to simulate the current martian climate. The calibration of these GCMs with the current seasonal cycle is a crucial step in understanding the climate history of Mars. One of the main climatic signals currently used to validate GCMs is the annual atmospheric pressure cycle. It is difficult to use changes in seasonal deposits on the surface of Mars to calibrate the GCMs given the spectral ambiguities between CO2 and H2O ice in the visible range. With the OMEGA imaging spectrometer covering the near infra-red range, it is now possible to monitor both types of ice at a spatial resolution of about 1 km. At global scale, we determine the change with time of the Seasonal South Polar Cap (SSPC) crocus line, defining the edge of CO2 deposits. This crocus line is not symmetric around the geographic South Pole. At local scale, we introduce the snowdrop distance, describing the local structure of the SSPC edge. Crocus line and snowdrop distance changes can now be used to calibrate GCMs. The albedo of the seasonal deposits is usually assumed to be a uniform and constant parameter of the GCMs. In this study, albedo is found to be the main parameter controlling the SSPC recession at both global and local scale. Using a defrost mass balance model (referred to as D-frost) that incorporates the effect of shadowing induced by topography, we show that the global SSPC asymmetry in the crocus line is controlled by albedo variations. At local scale, we show that the snowdrop distance is correlated with the albedo variability. Further GCM improvements should take into account these two results. We propose several possibilities for the origin of the asymmetric albedo control. The next step will be to identify and model the physical processes that create the albedo differences.  相似文献   

16.
Huiqun Wang  Jenny A. Fisher 《Icarus》2009,204(1):103-113
The complete archive of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Mars Daily Global Maps (MDGM) are used to study north polar clouds and dust storms that exhibit frontal structures during the spring and summer (Ls 0-180°). Results show that frontal events generally follow the edge of the polar cap during spring and mid/late summer with a gap in the distribution in early summer. The exact duration and timing of the gap vary from year to year. Ten to twenty percent of spring and summer time frontal events exhibit complex morphologies. Distinct temperature signatures are associated with features observed in images in many but not all cases. The general travel paths of the frontal events are eastward around the polar cap. Westward paths exist only at the edge of the polar cap in late spring/early summer. Occasionally, the paths curve toward or away from the polar cap in certain longitude sectors.  相似文献   

17.
In this paper, we have analyzed neutron spectroscopy data gathered by the High Energy Neutron Detector (HEND) instrument onboard Mars Odyssey for comparison of polar regions. It is known that observation of the neutron albedo of Mars provides important information about the distribution of water-ice in subsurface layers and about peculiarities of the CO2 seasonal cycle. It was found that there are large water-rich permafrost areas with contents of up to ∼50% water by mass fraction at both the north and south Mars polar regions. The water-ice layers at high northern latitudes are placed close to the surface, but in the south they are covered by a dry and relatively thick (10-20 cm) layer of soil. Analysis of temporal variations of neutron flux between summer and winter seasons allowed the estimation of the masses of the CO2 deposits which seasonally condense at the polar regions. The total mass of the southern seasonal deposition was estimated as 6.3×1015 kg, which is larger than the total mass of the seasonal deposition at the north by 40-50%. These results are in good agreement with predictions from the NASA Ames Research Center General Circulation Model (GCM). But, the dynamics of the condensation and sublimation processes are not quite as consistent with these models: the peak accumulation of the condensed mass of CO2 occurred 10-15 degrees of Ls later than is predicted by the GCM.  相似文献   

18.
The Mariner 9 Ultraviolet Spectrometer has observed the 2550 Å ozone spectral absorption feature on Mars. This absorption was previously detected in the south polar region by Mariner 7 in 1969. Mariner 9 did not observe ozone at any time in the equatorial region, nor at the south polar cap during its summer season. However, ozone was found in the north polar region beginning at a latitude of 45°N and extending northward. Ozone later appeared in the southern hemisphere southward of 50°S as the Mars autumnal equinox approached. The presence of ozone on Mars seems to be coupled to the water vapor content of its atmosphere.  相似文献   

19.
During the 1973 to 1974 opportunity, we obtained thermal maps of Venus on 16 days during a span of 43 days just before inferior conjunction. The spatial resolution was about 3 arcsec. The average limb darkening differs from that given by Ingersoll and Orton (1974). Real day-to-day changes in limb darkening were found. An indication of 4-day repetition of a thermal anomaly was found on one occasion. The lifetime of this disturbance probably lies between 4 and 8 days. Solar-related anomalies appear to repeat in most of the images. A southern hemisphere, solar-related disturbance showed significant changes in both position and intensity over 30 days, and we tentatively identify its lifetime as about equal to this period.  相似文献   

20.
The SPICAM instrument onboard Mars Express has successfully performed two Martian years (MY 27 and MY28) of observations. Water ice cloud optical depths spatial and temporal distribution was retrieved from nadir measurements in the wavelength range 300–320 nm. During the northern spring the cloud hazes complex distribution was monitored. The clouds in the southern hemisphere formed a zonal belt in the latitude range 30–60°S. The edge of the retreating north polar hood merged with the northern tropical clouds in the range 250–350°E. The development of the aphelion cloud belt (ACB) started with the weak hazes formation (cloud optical thickness 0.1–0.3) in the equatorial region. At the end of the northern spring, the ACB cloud optical thickness reached already values of 0.3–1. The ACB decay in the end of the northern summer was accompanied with a presence of clouds in the north mid-latitudes. The expanded north polar hood merged with the north mid-latitude clouds in the eastern hemisphere. The interannual comparison indicates a decrease in cloud activity immediately after a strong dust storm in southern summer of MY28. The strong dust storms of the MY28 may also be a reason of the observed north polar hood edge shifting northward by 5°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号