首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
通过详细的微区成分测定,发现胶北荆山群富铝岩系中石榴石普遍发育扩散环带,但扩散环带的发育程度及样式很不均匀,明显受与其相邻矿物的控制。与黑云母接触时,石榴石晶体边部的镁含量最低,环带最为发育,与堇青石接触时次之,与长英质矿物接触时则环带发育较弱或不发育。这种特征的石榴石扩散环带样式与传统认识有很大差异,反映降温过程中石榴石与黑云母等镁铁矿物之间的Fe-Mg交换作用主要是通过彼此接触的界面来实现,粒间流体对组分的传输作用有限。但是当岩石中黑云母大量存在而石榴石含量又较低时,由于体系水活度增高,粒间流体也会传输一定的Fe、Mg组分,导致与长英质矿物相邻的石榴石晶体边部发育微弱的扩散环带。通过分析,确定粒径大于1500斗m的石榴石晶体核部可以保存变质峰期的平衡成分,基质中远离石榴石等镁铁矿物处于长英质矿物之间的大颗粒黑云母颗粒核部也基本可以保存变质峰期的平衡成分。  相似文献   

2.
Garnet crystallization in metapelites from the Barrovian garnet and staurolite zones of the Lesser Himalayan Belt in Sikkim is modelled utilizing Gibbs free energy minimization, multi‐component diffusion theory and a simple nucleation and growth algorithm. The predicted mineral assemblages and garnet‐growth zoning match observations remarkably well for relatively tight, clockwise metamorphic PT paths that are characterized by prograde gradients of ~30 °C kbar?1 for garnet‐zone rocks and ~20 °C kbar?1 for rocks from the staurolite zone. Estimates for peak metamorphic temperature increase up‐structure toward the Main Central Thrust. According to our calculations, garnet stopped growing at peak pressures, and protracted heating after peak pressure was absent or insignificant. Almost identical PT paths for the samples studied and the metamorphic continuity of the Lesser Himalayan Belt support thermo‐mechanical models that favour tectonic inversion of a coherent package of Barrovian metamorphic rocks. Time‐scales associated with the metamorphism were too short for chemical diffusion to substantially modify garnet‐growth zoning in rocks from the garnet and staurolite zones. In general, the pressure of initial garnet growth decreases, and the temperature required for initial garnet growth was reached earlier, for rocks buried closer toward the MCT. Deviations from this overall trend can be explained by variations in bulk‐rock chemistry.  相似文献   

3.
A dramatic demonstration of the role of intergranular solubility in promoting chemical equilibration during metamorphism is found in the unusual zoning of garnet in pelitic schist exposed at Harpswell Neck, Maine, USA. Many garnet crystals have irregular, patchy distributions of Mn, Cr, Fe and Mg in their inclusion‐rich interiors, transitioning to smooth, concentric zoning in their inclusion‐poor outer rims; in contrast, zoning of Ca and Y is comparatively smooth and concentric throughout. We re‐assess the disputed origin of these zoning features by examining garnet growth in the context of the thermal and structural history of the rocks, and by evaluating the record of fluid–rock interaction revealed in outcrop‐scale veining and fluid‐inclusion assemblages. The transition in the character of garnet zoning correlates with the onset of a synkinematic, simple‐shear‐dominated phase of garnet growth and with a shift in the composition of the intergranular fluid from CO2‐rich to H2O‐rich. Compositional variations in garnet are therefore best explained by a two‐stage growth history in which intergranular diffusive fluxes reflect differences in the concentration of dissolved species in these two contrasting fluids. Interiors of garnet crystals grew in the presence of a CO2‐rich fluid, in which limited solubility for Mn and Cr (and perhaps Fe and Mg) produced patchy disequilibrium overprint zoning, while appreciable solubility for Ca and Y permitted their rock‐wide equilibration. Rims grew in the presence of an H2O‐rich fluid, in which high intergranular concentrations for all elements except Cr enabled diffusion over length scales sufficient for rock‐wide equilibration. This striking example of partial chemical equilibrium during reaction and porphyroblast growth implies that thermal effects may commonly be subsidiary in importance to solubilities in the intergranular medium as determinants of length scales for metamorphic equilibration.  相似文献   

4.
Metamorphic equilibration requires chemical communication between minerals and may be inhibited through sluggish volume diffusion and or slow rates of dissolution in a fluid phase. Relatively slow diffusion and the perceived robust nature of chemical growth zoning may preclude garnet porphyroblasts from readily participating in low‐temperature amphibolite facies metamorphic reactions. Garnet is widely assumed to be a reactant in staurolite‐isograd reactions, and the evidence for this has been assessed in the Late Proterozoic Dalradian pelitic schists of the Scottish Highlands. The 3D imaging of garnet porphyroblasts in staurolite‐bearing schists reveals a good crystal shape and little evidence of marginal dissolution; however, there is also lack of evidence for the involvement of either chlorite or chloritoid in the reaction. Staurolite forms directly adjacent to the garnet, and its nucleation is strongly associated with deformation of the muscovite‐rich fabrics around the porphyroblasts. “Cloudy” fluid inclusion‐rich garnet forms in both marginal and internal parts of the garnet porphyroblast and is linked both to the production of staurolite and to the introduction of abundant quartz inclusions within the garnet. Such cloudy garnet typically has a Mg‐rich, Mn‐poor composition and is interpreted to have formed during a coupled dissolution–reprecipitation process, triggered by a local influx of fluid. All garnet in the muscovite‐bearing schists present in this area is potentially reactive, irrespective of the garnet composition, but very few of the schists contain staurolite. The staurolite‐producing reaction appears to be substantially overstepped during the relatively high‐pressure Barrovian regional metamorphism reflecting the limited permeability of the schists in peak metamorphic conditions. Fluid influx and hence reaction progress appear to be strongly controlled by subtle differences in deformation history. The remaining garnet fails to achieve chemical equilibrium during the reaction creating distinctive patchy compositional zoning. Such zoning in metamorphic garnet created during coupled dissolution–reprecipitation reactions may be difficult to recognize in higher grade pelites due to subsequent diffusive re‐equilibration. Fundamental assumptions about metamorphic processes are questioned by the lack of chemical equilibrium during this reaction and the restricted permeability of the regional metamorphic pelitic schists. In addition, the partial loss of prograde chemical and textural information from the garnet porphyroblasts cautions against their routine use as a reliable monitor of metamorphic history. However, the partial re‐equilibration of the porphyroblasts during coupled dissolution–reprecipitation opens possibilities of mapping reaction progress in garnet as a means of assessing fluid access during peak metamorphic conditions.  相似文献   

5.
Garnet is a prototypical mineral in metamorphic rocks because it commonly preserves chemical and textural features that can be used for untangling its metamorphic development. Large garnet porphyroblasts may show extremely complex internal structures as a result of a polycyclic growth history, deformation, and modification of growth structures by intra‐ and intercrystalline diffusion. The complex internal structure of garnet porphyroblasts from garnet–phengite schists (GPS) of the Zermatt area (Western Alps) has been successfully decoded. The centimetre‐sized garnet porphyroblasts are composed of granulite facies garnet fragments overgrown by a younger generation of grossular‐rich eclogite facies garnet. The early granulite facies garnet (G‐Grt) formed from low‐P, high‐T metamorphism during a pre‐Alpine orogenic event. The late garnet (E‐Grt) is typical of high‐pressure, low‐temperature (HPLT) metamorphism and can be related to Alpine subduction of the schists. Thus, the garnet of the GPS are polycyclic (polymetamorphic). G‐Grt formation occurred at ~670 MPa and 780°C, E‐Grt formed at ~1.7 GPa and 530°C. The G‐Grt is relatively rich in Prp and poor in Grs, while E‐Grt is rich in Grs and poor in Prp. The Alm content (mol.%) of G‐Grt is 68 of E‐Grt 55. After formation of E‐Grt between and around fragmented G‐Grt at 530°C, the GPS have been further subducted and reached a maximum temperature of 580°C before exhumation started. Garnet composition profiles indicate that the initially very sharp contacts between the granulite facies fragments of G‐Grt and fracture seals of HPLT garnet (E‐Grt) have been modified by cation diffusion. The profiles suggest that Ca did not exchange at the scale of 1 µm, whereas Fe and Mg did efficiently diffuse at the derived maximum temperature of 580°C for the GPS at the scale of 7–8 µm. The Grt–Grt diffusion profiles resulted from spending c. 10 Ma at 530–580°C along the P–T–t path. The measured Grt composition profiles are consistent with diffusivities of log DMgFe = ?25.8 m2/s from modelled diffusion profiles. Mg loss by diffusion from G‐Grt is compensated by Fe gain by diffusion from E‐Grt to maintain charge balance. This leads to a distinctive Fe concentration profile typical of uphill diffusion.  相似文献   

6.
Garnet porphyroblasts in sillimanite‐bearing pelitic schists contain complex textural and compositional zoning, with considerable variation both within and between adjacent samples. The sillimanite‐bearing schists locally occur in regional Barrovian garnet zone assemblages and are indicative of a persistent lack of equilibrium during prograde metamorphism. Garnet in these Dalradian rocks from the Scottish Highlands preserves evidence of a range of metamorphic responses including initial growth and patchy coupled dissolution–reprecipitation followed by partial dissolution. Individual porphyroblasts each have a unique and variable response to prograde metamorphism and garnet with mainly flat compositional profiles co‐exists with those containing largely unmodified characteristic bell‐shaped Mn profiles. This highlights the need for caution in applying traditional interpretations of effective volume diffusion eliminating compositional variation. Cloudy garnet with abundant fluid inclusions is produced during incomplete modification of the initial porphyroblasts and these porous garnet are then particularly prone to partial replacement in sillimanite‐producing reactions. The modification of garnet via a dissolution–reprecipitation process releases Ca into the effective whole‐rock composition, displacing the pressure–temperature positions of subsequent isograd reactions. This represents the first report of internal metasomatism controlling reaction pathways. The behaviour of garnet highlights the importance of kinetic factors, especially deformation and fluids, in controlling reaction progress and how the resulting variability influences subsequent prograde history. The lack of a consistent metamorphic response, within and between adjacent schists, suggests that on both local and regional scales these rocks have largely not equilibrated at peak metamorphic conditions.  相似文献   

7.
Detailed petrographic analysis was performed on samples from five localities within the southern Adirondacks. Textures and zoning patterns in garnet from all samples provide evidence for dehydration melting of biotite. Zoning of grossular in garnet – providing a record of prograde growth – shows both increasing and decreasing trends in garnet from the same sample. However, Ca concentrations at the garnet rims of most samples are identical (grossular = 3.4%). These observations have been interpreted as evidence for the differential timing of garnet nucleation and growth. All Fe/(Fe + Mg) and some spessartine distributions are consistent between samples, displaying diffusive profiles established largely upon cooling. Only one sample, in which retrogression was minimal, contains garnet with flat Fe/(Fe + Mg) profiles. A general pelitic pseudosection constructed in the system MnNCKFMASH reveals a maximum for Ca in garnet where the plagioclase‐out isopleth intersects the solidus (muscovite = 0). The pseudosection predicts bell‐shaped core‐to‐rim profiles of grossular during anatexis, similar to those observed in the rocks. Garnet–biotite thermometry and GASP barometry indicate peak temperatures of at least 790 °C at about 7–9 kbar, similar to conditions determined for the central Adirondacks. Cooling rates determined from finite difference modelling of spessartine and Fe/(Fe + Mg) diffusional profiles indicate a multi‐stage cooling history in which some period of rapid cooling (>200 °C Myr?1) is required.  相似文献   

8.
Prograde P–T paths recorded by the chemistry of minerals of subduction‐related metamorphic rocks allow inference of tectonic processes at convergent margins. This paper elucidates the changing P–T conditions during garnet growth in pelitic schists of the Sambagawa metamorphic belt, which is a subduction related metamorphic belt in the south‐western part of Japan. Three types of chemical zoning patterns were observed in garnet: Ca‐rich normal zoning, Ca‐poor normal zoning and intrasectoral zoning. Petrological studies indicate that normally‐zoned garnet grains grew keeping surface chemical equilibrium with the matrix, in the stable mineral assemblage of garnet + muscovite + chlorite + plagioclase + paragonite + epidote + quartz ± biotite. Pressure and temperature histories were inversely calculated from the normally‐zoned garnet in this assemblage, applying the differential thermodynamic method (Gibbs' method) with the latest available thermodynamic data set for minerals. The deduced P–T paths indicate slight increase of temperature with increasing pressure throughout garnet growth, having an average dP/dT of 0.4–0.5 GPa/100 °C. Garnet started growing at around 470 °C and 0.6 GPa to achieve the thermal and baric peak condition near the rim (520 °C, 0.9 GPa). The high‐temperature condition at relatively low pressure (for subduction related metamorphism) suggests that heating occurred before or simultaneously with subduction.  相似文献   

9.
Novel approaches to garnet analysis have been used to assess rates of intergranular diffusion between different matrix phases and garnet porphyroblasts in a regionally metamorphosed staurolite‐mica‐schist from the Barrovian‐type area in Scotland. X‐ray maps and chemical traverses of planar porphyroblast surfaces reveal chemical heterogeneity of the garnet grain boundary linked to the nature of the adjacent matrix phase. The garnet preserves evidence of low temperature retrograde exchange with matrix minerals and diffusion profiles documenting cation movement along the garnet boundaries. Garnet–quartz and garnet–plagioclase boundaries preserve evidence of sluggish Mg, Mn and Fe diffusion at comparable rates to volume diffusion in garnet, whereas diffusion along garnet–biotite interfaces is much more effective. Evidence of particularly slow Al transport, probably coupled to Fe3+ exchange, is locally preserved on garnet surfaces adjacent to Fe‐oxide phases. The Ca distribution on the garnet surface shows the most complex behaviour, with long‐wavelength heterogeneities apparently unrelated to the matrix grain boundaries. This implies that the Ca content of garnet is controlled by local availability and is thought likely to reflect disequilibrium established during garnet growth. Geochemical anomalies on the garnet surfaces are also linked to the location of triple junctions between the porphyroblasts and the matrix phases, and imply enhanced transport along these channels. The slow rates of intergranular diffusion and the characteristics of different boundary types may explain many features associated with the prograde growth of garnet porphyroblasts. Thus, minerals such as quartz, Fe‐oxides and plagioclase whose boundaries with garnet are characterized by slow intergranular diffusion rates appear to be preferentially trapped as inclusions within porphyroblasts. As such grain boundary diffusion rates may be a significant kinetic impediment to metamorphic equilibrium and garnet may struggle to maintain chemical and textural equilibrium during growth in pelites.  相似文献   

10.
11.
Abstract An analytical electron microscope study of almandine garnet from a metamorphosed Al–Fe‐rich rock revealed detailed composition profiles and defect microstructures of resorption zoning along fluid‐infiltrated veins and even into the garnet/ilmenite (inclusion) interface. This indicates a limited volume diffusion for the cations in substitution (mainly Ca and Fe) and an interface‐controlled partition for the extension of a composition‐invariant margin. A corrugated interface between the Ca‐rich margin/zone and the almandine garnet core is characterized by dislocation arrays and recovery texture further suggesting a resorption process facilitated by diffusion‐induced recrystallization, diffusion‐induced dislocation migration and diffusion–induced grain boundary migration. Integrated microstructural and chemical studies are essential for understanding the underlying mechanisms of processes such as garnet zoning and its modification. Without this understanding, it will not be possible to reliably use garnet compositions for thermobarometry and other applications that rely on garnet chemical information.  相似文献   

12.
Deformation-induced garnet zoning   总被引:1,自引:0,他引:1  
Hyeong Soo Kim   《Gondwana Research》2006,10(3-4):379-388
Compositional zoning patterns in garnet porphyroblasts from kyanite-bearing samples of the Devonian Littleton Formation, north-central Massachusetts, reveal complex patterns of growth that are related to multiple deformation and metamorphic events. Garnet porphyroblasts exhibit asymmetrical and irregular zoning patterns in XMn, XCa and Fe/(Fe + Mg). Zoning reversals in Mn and Fe/(Fe + Mg) and patch distribution in Ca appear to occur around the boundaries of the textural zones. Also, the compositions of the garnet at the textural boundaries are variable for all traverses. These observations suggest that the garnet zoning was not only modified from diffusion processes, but was also influenced by pre-existing microfabrics through the effects of preferential dissolution and resorption in partial disequilibrium. Relationships between chemical and textural truncations indicate that the zoning patterns of garnet were strongly modified from preferential dissolution and precipitation during the development of successive foliations that occurred in zones of high strain/stress (cleavage seams) and zones of low strain/stress, respectively.  相似文献   

13.
A detailed investigation of the compositional variation in garnet has been undertaken in a garnet–pyroxene‐bearing granulite from the high‐grade Gföhl Unit, Moldanubian Zone, Lower Austria. Textural observations, together with the interpretation of the preserved garnet chemistry, enables the recognition of both prograde core and peak metamorphic garnet mantle growth stages, an extremely rare feature in high‐P–T granulite facies rocks. Initial thermobarometric calculations undertaken across whole garnet zoning profiles show how correct interpretation of a zoning profile is essential if the maximum peak metamorphic P–T conditions are to be recovered. The effect of retrograde decompression‐ and cooling‐driven reactions on inclusion and host garnet compositions has also been assessed. The results indicate that caution should be exercised when utilizing inclusion and adjacent garnet compositions for the thermobarometric evaluation of peak metamorphic equilibration conditions. Peak P–T conditions were determined by the TWEEQU thermobarometric method, utilizing the core compositions of matrix phases combined with the interpreted high‐P–T garnet mantle composition, to give 15.6 kbar and 1090 °C, consistent with previously determined results for Moldanubian granulites. Similar high‐P–T estimates are also provided by a re‐evaluation of previously published results for a granulite sample from the same lithological unit, using a modified interpretation of garnet and plagioclase compositional data. The new estimates presented confirm the previously disputed idea that the Gföhl Unit underwent a high‐pressure granulite facies stage and is therefore distinctly different from the underlying tectonostratigraphic units. It is emphasized that any interpretation of the peak metamorphic conditions in high‐grade rocks must be based on detailed petrographic observations combined with a thorough understanding of the co‐existing equilibrium mineral compositions.  相似文献   

14.
Summary A forward model is proposed to reproduce the formation of garnet under conditions of sluggish diffusion transport in the matrix. Starting from a matrix consisting of chlorite and quartz, the amount of garnet growth and the chemical composition was calculated at each PT increment in the system MnO–FeO–MgO–Al2O3–SiO2–H2O. Sluggish diffusion transport was introduced considering the local equilibrium between garnet surface and the matrix within a given diffusion distance (equilibration volume). Varying the diffusion distance, calculations were performed along the prograde PT path of the Sambagawa metamorphic belt, Japan. The final size of the garnet grains was largely proportional to the diffusion distance. In contrast to the model without diffusion limitations, a shorter diffusion distance resulted in a rise of the Mg/(Mg + Fe) ratio in garnet before Mn approached zero. These results indicate that the chemical composition trend in zoned garnet from the Sambagawa belt is consistent with growth under sluggish material transport. The calculated amount of garnet growth increases dramatically with temperature. The amount of newly grown natural garnet in the Sambagawa metamorphic rocks was plotted against temperatures, where chemical compositions of garnet were calibrated against temperatures with the Gibbs’ method. This trend was also consistent with the modelled garnet behaviour.  相似文献   

15.
The spatial disposition, compositional zoning profiles, and size distributions of garnet crystals in 11 specimens of pelitic schist from the Picuris Range of New Mexico (USA) demonstrate that the kinetics of intergranular diffusion controlled the nucleation and growth mechanisms of porphyroblasts in these rocks. An ordered disposition of garnet centers and a significant correlation between crystal radius and near-neighbor distances manifest suppressed nucleation of new crystals in diffusionally depleted zones surrounding pre-existing crystals. Compositional zoning profiles require diffusionally controlled growth, the rate of which increases exponentially as temperature increases with time; an acceleration factor for growth rate can be estimated from a comparison of compositional profiles for crystals of different sizes in each specimen. Crystal size distributions are interpreted as the result of nucleation rates that accelerate exponentially with increasing temperature early in the crystallization process, but decline in the later stages because of suppression effects in the vicinity of earlier-formed nuclei. Simulations of porphyroblast crystallization, based upon thermally accelerated diffusionally influenced nucleation kinetics and diffusionally controlled growth kinetics, quantitatively replicate textural relations in the rocks. The simulations employ only two variable parameters, which are evaluated by fitting of crystal size distributions. Both have physical significance. The first is an acceleration factor for nucleation, with a magnitude reflecting the prograde increase during the nucleation interval of the chemical affinity for the reaction in undepleted regions of the rock. The second is a measure of the relative sizes of the porphyroblast and the diffusionally depleted zone surrounding it. Crystal size distributions for the Picuris Range garnets correspond very closely to those in the literature from a variety of other localities for garnet and other minerals. The same kinetic model accounts quantitatively for crystal size distributions of porphyroblastic garnet, phlogopite, sphene, and pyroxene in rocks from both regional and contact metamorphic occurrences. These commonalities indicate that intergranular diffusion may be the dominant kinetic factor in the crystallization of porphyroblasts in a wide variety of metamorphic environments.  相似文献   

16.
Summary ?Diffusion modeling of zoning profiles in garnet rims from mafic granulites is used to estimate cooling rates in the Proterozoic basement of Sri Lanka, which represents a small, but important fragment of the Gondwana super-continent. Metamorphic peak temperatures and pressures, estimated with two-pyroxene thermometry and garnet–clinopyroxene–plagioclase–quartz (GADS) barometry, yield 875±20 °C and 9.0±0.1 kbar. These peak metamorphic conditions are slightly higher than results obtained by garnet-biotite Fe–Mg exchange thermometry of 820±20 °C. Reset flat zoning profiles were observed in most garnets. Only narrow garnet rims touching biotite exhibit retrograde zoning in terms of Fe and Mg exchange. The garnet zoning observed requires a slow cooling history. Equilibrium was achieved along grain boundaries during or close to peak metamorphism. During subsequent cooling to lower temperatures, only local exchange between garnet and biotite occurred. A cooling rate of 1–5 °C/Ma is estimated. The estimated temperature-time history from garnet profiles is in good agreement with the cooling history inferred from mineral radiogenic ages in the literature. Received December 11, 2001; revised version accepted August 28, 2002  相似文献   

17.
Reaction of zoning of garnet   总被引:1,自引:0,他引:1  
Compositional zoning of garnet in metamorphic or igneous rocks preserves evidence of the equilibration history of the sample and can be interpreted in terms of a growth-fractionation, diffusion-exchange, or diffusion-reaction model. Diffusion zoning is usually assumed to result from exchange reactions between garnet and other phases as the partitioning coefficient varies in response to changing environmental conditions, primarily temperature. However, in many natural environments where garnet grew originally in divariant equilibrium with other phases, changing conditions can promote continuous or “divariant” reactions and consequent compositional shifts of phases that can be much greater in some systems showing these reactions than those related to the small changes of partitioning. Diffusional zoning related to overstepping of these continuous reactions must be related to incongruent reaction and necessitates formulation of a kinetic diffusion-reaction model involving moving phase boundaries as well as solid-state diffusion. Three samples containing zoned garnets from the metamorphic aureole around the Ronda ultramafic intrusion in southern Spain are used to illustrate two possible models of diffusion-reaction processes. The examples are particularly informative because the reactions are demonstrably irreversible and evidence of the reaction system is preserved. Partitioning data indicates that compositions of product phases are not in equilibrium with the original garnet and do not vary with extent of reaction; therefore, exchange reactions with garnet were not possible and garnet changed composition only by incongruent reaction. After a small amount of reaction, Mg/Fe of the rim composition approaches a value apparently in equilibrium with product phases, but the garnets are zoned inward to the original garnet composition preserved in the interior. Grossularite content is approximately constant and spessartite content variable but small, thus, the rim composition of pyrope or almandine is assumed to be fixed by the external reaction process and is taken as a boundary condition in the following models. The zoning profile of pyrope or almandine component between the fixed rim and core compositions (assumed to extend to ∞) is described in semiinfinite, half-space models appropriate for large garnets with narrow rims. The first model corresponds to a reaction system in which all garnet compositions are metastable (case 1) and zoning depends on the independent variables of the diffusion constant, velocity of the interface between garnet and matrix, and time. The second model, corresponding to systems in which the initial garnet composition is metastable but an equilibrium composition is stable (case 2), depends on the independent variables diffusion constant, time, and a function of reaction compositions. In case 1 the consumption velocity is assumed constant and a steady state zoning profile is reached at large time, whereas, in case 2, the velocity decreases with the concentration gradient and steady state is not possible. The models were tested using a reaction time estimated from cooling models of the aureole, mass of garnet consumed, determined petrographically, and phase compositions. The two cases are somewhat independent in that different parameters are independent variables. The estimate of the diffusion constant of 10?18±2 cm2/sec (assumed to be a mutual or binary coefficient for almandine and pyrope) is considered reasonable for the temperature range of reaction (probably 600–900° C), and the two models are consistent considering the probable error and possible real temperature differences. It is obvious that details of the metamorphic reaction system must be known to successfully apply diffusion models. Kinetic models, involving consumption or growth of the phase as well as diffusion are probably necessary when dealing with natural rocks. Several possible and interesting complications, such as cross coupling between components, can be investigated if more data were available. Experimental determination of diffusion constants allow natural reaction rates to be estimated by this method. Diffusion zoning is an important consideration that could increase the efficiency of experimentation with chemically recalcitrant phases.  相似文献   

18.
Abstract Finite difference models of Fe-Mg diffusion in garnet undergoing cooling from metamorphic peak conditions are used to infer the significance of temperatures calculated using garnet-biotite Fe-Mg exchange thermometry. For rocks cooled from high grades where the garnet was initially homogeneous, the calculated temperature (Tcalc) using garnet core and matrix biotite depends on the size of the garnet, the ratio of garnet to biotite in the rock (Vgarnet/Vbiotite) and the cooling rate. For garnets with radii of 1 mm and Vgarnet/Vbiotite<1, Tcalc is 633, 700 and 777°C for cooling rates of 1, 10 and 100°C/Ma. For Vgarnet/Vbiotite= 1 and 4 and a cooling rate of 10° C/Ma, Tcalc is approximately 660 and 610° C, respectively. Smaller and larger garnets have lower and higher Tcalc, respectively. These results suggest that peak metamorphic temperatures may be reliably attained from rocks crystallized at conditions below Tcalc of the garnet core, provided that Vgarnet/Vbiotite is sufficiently small (<0.1) and that the composition of the biotite at the metamorphic peak has not been altered during cooling. Numerical experiments on amphibolite facies garnets with nominal peak temperatures of 550–600° C generate a ‘well’in Fe/(Fe + Mg) near the rim during cooling. Maximum calculated temperatures for the assemblage garnet + chlorite + biotite + muscovite + plagioclase + quartz using the Fe/(Fe + Mg) at the bottom of the ‘well’with matrix biotite range from 23–43° C to 5–12° C below the peak metamorphic temperature for cooling rates of 1 and 100° C/Ma, respectively. Maximum calculated temperatures for the assemblage garnet + staurolite + biotite + muscovite + plagioclase + quartz are approximately 70° C below the peak metamorphic temperature and are not strongly dependent on cooling rate. The results of this study indicate that it may be very difficult to calculate peak metamorphic temperatures using garnet-biotite Fe-Mg exchange thermometry on amphibolite facies rocks (Tmax > 550° C) because the rim composition of the garnet, which is required to calculate the peak temperature, is that most easily destroyed by diffusion.  相似文献   

19.
Results from the modeling of compositional zoning patterns in garnet porphyroblasts from the medium-grade metapelitic schist of northern Ladoga area are considered. The P-T pseudosections in the model KMnFMASH system were calculated for this purpose using THERMOCALC software (Powell et al., 1998). Particular emphasis is placed upon the effect of garnet growth kinetics on the model zoning profiles for Mn (Gulbin, 2013). They fit the observed profiles if intergranular diffusion-controlled growth is assumed for porphyroblasts. Additionally, a model of metamorphic fractional crystallization is used to characterize the oscillations in both the garnet core and rim. Starting from the assumption that a reservoir, where garnet grows, consists of chlorite, and that this mineral is intensely replaced with biotite and staurolite at the onset of crystallization, a partial release of Mn from the chlorite structure and the concentration of this component in intergranular space is inferred. In terms of the model under consideration, the coefficient of the Mn partition between garnet and reservoir temporarily increases at the early stage of garnet growth, giving rise to the enrichment of the intermediate zone of porphyroblasts in Mn. In addition to the modeling of garnet growth zoning, its subsequent diffusion modification is estimated on the basis of intracrystalline diffusion profile simulation. The reverse zoned, Mn-rich and Mg-poor garnet rims are related to retrograde growth of garnet at the late stage of porphyroblast formation. The data obtained are used to constrain metamorphic evolution and the P-T-t path of staurolite-bearing rocks in the northern domain of the studied area.  相似文献   

20.
Thermal zoning of the Highland Complex, Sri Lanka has been delineated using the Fe2+–Mg distribution coefficient between garnet and biotite from garnet–biotite gneiss samples collected with wide geographical distribution. In order to minimize the potential for retrograde Fe–Mg exchange and maximize the potential for retaining peak equilibrium KD (garnet–biotite) and temperature, garnet and biotite included within feldspar and quartz without other mineral inclusions have been selected. The calculated results indicate four distinct temperature contours with KD values varying from 1.84 to 6.38 and temperature varying from 996 to 591 °C. From the present results, it is possible to divide the Highland Complex into two major metamorphic zones: a high‐temperature area in the central region and a low‐temperature area in the south‐western and north‐eastern region. In conjunction with the metamorphic pressure variations estimated from the granulites of the Highland Complex in previous studies, it is shown that the high‐ and low‐temperature areas are complemented by a high‐pressure region towards the eastern side and a low‐pressure region towards the western side of this complex. This thermal dome is interpreted to be an artifact of the different crustal levels exhumed following Pan‐African metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号