首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract– Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra‐terrestrial end‐members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low‐temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.  相似文献   

2.
Abstract By mineral and bulk compositions, the Lewis Cliff (LEW) 88516 meteorite is quite similar to the ALHA77005 martian meteorite. These two meteorites are not paired because their mineral compositions are distinct, they were found 500 km apart in ice fields with different sources for meteorites, and their terrestrial residence ages are different. Minerals in LEW88516 include: olivine, pyroxenes (low- and high-Ca), and maskelynite (after plagioclase); and the minor minerals chromite, whitlockite, ilmenite, and pyrrhotite. Mineral grains in LEW88516 range up to a few mm. Texturally, the meteorite is complex, with regions of olivine and chromite poikilitically enclosed in pyroxene, regions of interstitial basaltic texture, and glass-rich (shock) veinlets. Olivine compositions range from Fo64 to Fo70, (avg. Fo67), more ferroan and with more variation than in ALHA77005 (Fo69 to Fo73). Pyroxene compositions fall between En77Wo4 and En65Wo15 and in clusters near En63Wo9 and En53Wo33, on average more magnesian and with more variation than in ALHA77005. Shock features in LEW88516 range from weak deformation through complete melting. Bulk chemical analyses by modal recombination of electron microprobe analyses, instrumental neutron activation, and radiochemical neutron activation confirm that LEW88516 is more closely related to ALHA77005 than to other known martian meteorites. Key element abundance ratios are typical of martian meteorites, as is its non-chondritic rare earth pattern. Differences between the chemical compositions of LEW88516 and ALHA77005 are consistent with slight differences in the proportions of their constituent minerals and not from fundamental petrogenetic differences. Noble gas abundances in LEW88516, like those in ALHA77005, show modest excesses of 40Ar and 129Xe from trapped (shock-implanted) gas. As with other ALHA77005 and the shergottite martian meteorites (except EETA79001), noble gas isotope abundances in LEW88516 are consistent with exposure to cosmic rays for 2.5–3 Ma. The absence of substantial effects of shielding from cosmic rays suggest LEW88516 spent this time as an object no larger than a few cm in diameter.  相似文献   

3.
Abstract— Cosmic-ray produced nuclear tracks and noble gases have been studied in the martian orthopyroxenite Allan Hills 84001 to delineate its cosmic-ray exposure history, preatmospheric size, and fall characteristics. A K-Ar age of 3.9 Ga, cosmic-ray exposure duration of 16.7 Ma, and a preatmospheric radius of 10 cm have been deduced from the noble gas and track data. The track data suggest ALH 84001 to be a single fall that has suffered atmospheric mass ablation in excess of 85%, higher than the value deduced for the shergottites, ALHA 77005, EETA 79001, and Shergotty. The formation age, as well as the cosmic-ray exposure duration, determined in this work are in good agreement with values reported earlier and are distinctly different from other shergottite, nakhlite, and chassignite (SNC) meteorites analysed so far. The high cosmogenic 22Ne/21Ne ratio of 1.22 most probably reflects an effect due to non-chondritic composition of ALH 84001 as the track data suggest high shielding (<5cm) for the analysed samples. There are signatures in the noble gas data that indicate the possible presence of trapped Ar and Ne of martian atmospheric origin in ALH 84001.  相似文献   

4.
Abstract— We report the elemental and isotopic composition of the noble gases as well as the chemical abundances in pyroxene, maskelynite/mesostasis glass, and bulk material of Shergotty and of bulk samples from Chassigny and Yamato 793605. The 40K-40Ar isochron for the Shergotty minerals yields a gas retention age of 196 Ma, which is, within errors, in agreement with previously determined Rb-Sr internal isochron ages. Argon that was trapped at this time has a 40Ar/36Ar ratio of 1100. For Chassigny and Y-793605, we obtain trapped 40Ar/36Ar ratios of 1380 and 950, respectively. Using these results and literature data, we show that the three shergottites, Shergotty, Zagami, and QUE 94001; the lherzolites ALH 77005, LEW 88516, and Y-793605; as well as Chassigny and ALH 84001 contain a mixture of Martian mantle and atmospheric Ar; whereas, the trapped 40Ar/36Ar ratio of the nakhlites, Nakhla, Lafayette, and Governador Valadares cannot be determined with the present data. We show that Martian atmospheric trapped Ar in Martian meteorites is correlated with the shock pressure that they experienced. Hence, we conclude that the Martian atmospheric gases were introduced by shock into the meteoritic material. For the Shergotty minerals, we obtain 3He-, 21Ne-, and 38Ar-based cosmic-ray exposure ages of 3.0 Ma, and for the lherzolite Y-793605, 4.0 Ma, which confirms our earlier conclusion that the lherzolites were ejected from Mars ~1 Ma before the shergottites. Chassigny yields the previously known ejection age of 11.6 Ma.  相似文献   

5.
Abstract– Xenon‐isotopic ratios, step‐heating release patterns, and gas concentrations of mineral separates from Martian shergottites Roberts Massif (RBT) 04262, Dar al Gani (DaG) 489, Shergotty, and Elephant Moraine (EET) 79001 lithology B are reported. Concentrations of Martian atmospheric xenon are similar in mineral separates from all meteorites, but more weathered samples contain more terrestrial atmospheric xenon. The distributions of xenon from the Martian and terrestrial atmospheres among minerals in any one sample are similar, suggesting similarities in the processes by which they were acquired. However, in opaque and maskelynite fractions, Martian atmospheric xenon is released at higher temperatures than terrestrial atmospheric xenon. It is suggested that both Martian and terrestrial atmospheric xenon were initially introduced by weathering (low temperature alteration processes). However, the Martian component was redistributed by shock, accounting for its current residence in more retentive sites. The presence or absence of detectable 129Xe from the Martian atmosphere in mafic minerals may correspond to the extent of crustal contamination of the rock’s parent melt. Variable contents of excess 129Xe contrast with previously reported consistent concentrations of excess 40Ar, suggesting distinct sources contributed these gases to the parent magma.  相似文献   

6.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   

7.
Abstract— This study provides a complete data set of all five noble gases for bulk samples and mineral separates from three Martian shergottites: Shergotty (bulk, pyroxene, maskelynite), Zagami (bulk, pyroxene, maskelynite), and Elephant Moraine (EET) A79001, lithology A (bulk, pyroxene). We also give a compilation of all noble gas and nitrogen studies performed on these meteorites. Our mean values for cosmic‐ray exposure ages from 3He, 21Ne, and 38Ar are 2.48 Myr for Shergotty, 2.73 Myr for Zagami, and 0.65 Myr for EETA79001 lith. A. Serious loss of radiogenic 4He due to shock is observed. Cosmogenic neon results for bulk samples from 13 Martian meteorites (new data and literature data) are used in addition to the mineral separates of this study in a new approach to explore evidence of solar cosmic‐ray effects. While a contribution of this low‐energy irradiation is strongly indicated for all of the shergottites, spallation Ne in Chassigny, Allan Hills (ALH) 84001, and the nakhlites is fully explained by galactic cosmic‐ray spallation. Implanted Martian atmospheric gases are present in all mineral separates and the thermal release indicates a near‐surface siting. We derive an estimate for the 40Ar/36Ar ratio of the Martian interior component by subtracting from measured Ar in the (K‐poor) pyroxenes the (small) radiogenic component as well as the implanted atmospheric component as indicated from 129Xe, * excesses. Unless compromised by the presence of additional components, a high ratio of ~2000 is indicated for Martian interior argon, similar to that in the Martian atmosphere. Since much lower ratios have been inferred for Chassigny and ALH 84001, the result may indicate spatial and/or temporal variations of 40Ar/36Ar in the Martian mantle.  相似文献   

8.
Abstract— Ar‐rich noble gases, the so‐called “subsolar” noble gases, are a major component of heavy primordial noble gases in unequilibrated ordinary chondrites and some classes of anhydrous carbonaceous chondrites, whereas they are almost absent in hydrous carbonaceous chondrites that suffered extensive aqueous alteration. To understand the effects of aqueous alteration on the abundance of Ar‐rich noble gases, we performed an aqueous alteration experiments on the Ningqiang type 3 carbonaceous chondrite that consists entirely of anhydrous minerals and contains Ar‐rich noble gases. Powdered samples and deionized neutral water were kept at 200 °C for 10 and 20 days, respectively. Mineralogical analyses show that, during the 10‐day alteration, serpentine and hematite formed at the expense of olivine, low‐Ca pyroxene, and sulfide. Noble gas analyses show that the 10‐day alteration of natural Ningqiang removed 79% of the primordial 36Ar, 68% of the 84Kr, and 60% of the 132Xe, but only 45% of the 4He and 53% of the primordial 20Ne. Calculated elemental ratios of the noble gases removed during the 10‐day alteration are in the range of those of Ar‐rich noble gases. These results indicate that Ar‐rich noble gases are located in materials that are very susceptible to aqueous alteration. In contrast, heavy primordial noble gases remaining in the altered samples are close to Q gas in elemental and isotope compositions. This indicates that phase Q is much more resistant to aqueous alteration than the host phases of Ar‐rich noble gases. In the 20‐day sample, the mineralogical and noble gas signatures are basically similar to those of the 10‐day sample, indicating that the loss of Ar‐rich noble gases was completed within the 10‐day alteration. Our results suggest that almost all of the Ar‐rich noble gases were lost from primitive asteroids during early, low‐temperature aqueous alteration.  相似文献   

9.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

10.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

11.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

12.
The weathering products present in igneous terrestrial Antarctic samples were analyzed, and compared with those found in the four Miller Range nakhlite Martian meteorites. The aim of these comparisons was to determine which of the alteration phases in the Miller Range nakhlites are produced by terrestrial weathering, and what effect rock composition has on these phases. Antarctic terrestrial samples MIL 05031 and EET 96400, along with the Miller Range nakhlites MIL 03346 and 090032, were found to contain secondary alteration assemblages at their externally exposed surfaces. Despite the difference in primary mineralogy, the assemblages of these rocks consist mostly of sulfates (jarosite in MIL 05031, jarosite and gypsum in EET 96400) and iddingsite‐like Fe‐clay. As neither of the terrestrial samples contains sulfur‐bearing primary minerals, and these minerals are rare in the Miller Range nakhlites, it appears that SO42?, possibly along with some of the Na+, K+, and Ca+ in these phases, was sourced from wind‐blown sea spray and biogenic emissions from the southern ocean. Cl enrichment in the terrestrially derived “iddingsite” of MIL 05031 and MIL 03346, and the presence of halite at the exterior edge of MIL 090032, can also be explained by this process. However, jarosite within and around the olivine‐bound melt inclusions of MIL 090136 is present in the interior of the meteorite and, therefore, is probably the product of preterrestrial weathering on Mars.  相似文献   

13.
Abstract Solar noble gases He, Ne, Ar and Kr implanted in the H3–6 meteorite regolith breccia Acfer 111 agree in their elemental composition with that in present-day solar wind and, except for a 25% deficit of 4He, also with adopted solar abundances. The presence of such unfractionated solar gases makes Acfer 111 unique (until now). Closed system stepped etching releases noble gases that can be explained as mixtures of two distinct types of He, Ne, and Kr of isotopic compositions as they have been derived previously from meteorites and lunar samples that contain heavily fractionated solar gases. Since the same putative end members, ascribed to the solar wind (SW) and supra-thermal solar energetic particles (SEP), are also present in Acfer 111, we argue that these end members represent two truly independent components. We discount the possibility that one isotopic composition derived from the other by diffusion of the gases within, or upon their release from, their host phases. The isotopic signatures of noble gases in Acfer 111 agree with those in a lunar ilmenite of young antiquity ?100 Ma) but are in disagreement with the noble gases in lunar ilmenite 79035 of 1–2 Ga antiquity. Systematic changes are discussed of the nuclide abundance ratios as etching proceeds; they are ascribed to differences in trapping efficiency and in penetration depth of the different noble gas ion species upon their implantation.  相似文献   

14.
Abstract— Argon-isotopic abundances were measured in neutron-irradiated samples of Martian meteorites Chassigny, Allan Hills (ALH) 84001, ALH 77005, Elephant Moraine (EET) 79001, Yamato (Y) 793605, Shergotty, Zagami, and Queen Alexandra Range (QUE) 94201, and in unirradiated samples of ALH 77005. Chassigny gives a 39Ar-40Ar age of 1.32 ± 0.07 Ga, which is similar to radiometric ages of the nakhlites. Argon-39-Argon-40 data for ALH 84001 indicate ages between 3.9 and 4.3 Ga. A more precise definition of this age requires detailed characterization of the multiple trapped Ar components in ALH 84001 and of 39Ar recoil distribution. All six shergottite samples show apparent 39Ar-40Ar ages substantially older than the ~165–200 Ma range in ages given by other isotope dating techniques. Shergottites appear to contain ubiquitous Ar components acquired from the Martian atmosphere, the Martian mantle, and commonly terrestrial atmospheric contamination. Zagami feldspar also suggests inherited radiogenic 40Ar. These data analyses indicate that the recent Martian atmospheric component trapped in shergottites has a 40Ar/36Ar ratio possibly as low as ~1750 and no greater than ~1900. These ratios are less than the value of 3000 ± 500 reported by Viking. The 40Ar/36Ar ratio for the Martian mantle component is probably <500 but is poorly constrained. The correlation between trapped 40Ar/36Ar and 129Xe/132Xe ratios in shergottite impact glasses and unirradiated samples of ALH 77005 shows considerable scatter and suggests that the 36Ar/132Xe ratio in the Martian components may vary. Resolution of Martian atmospheric 40Ar/36Ar ratio at different time periods (i.e., at ~4.0 and 0.2 Ga) is also difficult without an understanding of the composition of various trapped components.  相似文献   

15.
The isotopic composition of the noble gases of the new Martian meteorite, the Dhofar 019 shergottite, found in the desert in the territory of the Sultanate of Oman on January 24, 2001, was investigated. Stepwise thermal annealing with isotopic analysis of each of the noble-gas temperature fractions was employed to determine the component composition. The concentration of the trapped noble gases in the new Martian meteorite Dhofar 019 is relatively high, although it lies within the range of concentrations in known SNC meteorites. A characteristic feature of all the trapped noble gases is the presence of two main components: a low-temperature, probably terrestrial atmospheric, component, trapped during the weathering of the meteorite on Earth, and a high-temperature trapped Martian component. Owing to the different ratios of the quantities of the two components, the trapped neon, argon, krypton, and xenon differ markedly in the kinetics of their release. The isotopic composition of the noble gases varies accordingly. The trapped xenon was found to contain two Martian components. One of them, with typical ratios of 129Xe/132Xe and 132Xe/84Kr, is representative of xenon and krypton of the Martian atmosphere; the other, of gases of the Martian mantle. Variations of the isotopic compositions of helium, neon, and argon (and also, to a lesser extent, of krypton and xenon) during the thermal annealing of the Dhofar 019 meteorite clearly point to a large proportion of cosmogenic as well as trapped components. The concentration of cosmogenic neon and argon in the meteorite is unusually high. This corresponds to a maximum exposure age among other SNC meteorites: 20 million years. Estimates of the potassium–argon age (gas-retention age) yielded the figure of 560 million years, which is within the range of values obtained for SNC meteorites by other authors, who used the rubidium–strontium and the potassium–argon technique.  相似文献   

16.
Abstract— Magnetic properties of 26 (of 32) unpaired Martian meteorites (SNCs) are synthesized to further constrain the lithology carrying Martian magnetic crustal sources. Magnetic properties of ultramafic cumulates (i.e., Chassigny, Allan Hills [ALH] 84001) and lherzolitic shergottites (ALH 77005, Lewis Cliff [LEW] 88516) are one or two orders of magnitude too weak to account for the crustal magnetizations, assuming magnetization in an Earth‐like field. Nakhlites and some basaltic shergottites, which are the most magnetic SNCs, show the right intensity. Titanomagnetite is the magnetic carrier in the nakhlites (7 meteorites), whereas in most basaltic shergottites (11 meteorites) it is pyrrhotite. Dhofar (Dho) 378, Los Angeles, and NWA 480/1460 and 2046 are anomalous basaltic shergottites, as their magnetism is mainly due to titanomagnetite. Pyrrhotite should be among the candidate minerals for the magnetized Noachian crust.  相似文献   

17.
We collected the published noble gas data of altogether 35 lunar meteorites. This compilation includes the stable isotopes of He, Ne, Ar, Kr, and Xe. We also give a summary of cosmogenic, trapped, and radiogenic noble gas components of lunar meteorites for which data are available in the literature.  相似文献   

18.
Abstract— Noble gas data from Martian meteorites have provided key constraints about their origin and evolution, and their parent body. These meteorites have witnessed varying shock metamorphic overprinting (at least 5 to 14 GPa for the nakhlites and up to 45–55 GPa (e.g., the lherzolitic shergottite Allan Hills [ALH] A77005), solar heating, cosmic‐ray exposure, and weathering both on Mars and Earth. Influences on the helium budgets of Martian meteorites were evaluated by using a new data set and literature data. Concentrations of 3He, 4He, U, and Th are measured and shock pressures for same sample aliquots of 13 Martian meteorites were determined to asses a possible relationship between shock pressure and helium concentration. Partitioning of 4He into cosmogenic and radiogenic components was performed using the lowest 4He/3He ratio we measured on mineral separates (4He/3He = 4.1, pyroxene of ALHA77005). Our study revealed significant losses of radiogenic 4He. Systematics of cosmogenic 3He and neon led to the conclusion that solar radiation heating during transfer from Mars to Earth and terrestrial weathering can be ruled out as major causes of the observed losses of radiogenic helium in bulk meteorites. For bulk rock we observed a correlation of shock pressure and radiogenic 4He loss, ranging between ?20% for Chassigny and other moderately shocked Martian meteorites up to total loss for meteorites shocked above 40 GPa. A steep increase of loss occurs around 30 GPa, the pressure at which plagioclase transforms to maskelynite. This correlation suggests significant 4He loss induced by shock metamorphism. Noble gas loss in rocks is seen as diffusion due to (1) the temperature increase during shock loading (shock temperature) and (2) the remaining waste heat after adiabatic unloading (post shock temperature). Modeling of 4He diffusion in the main U, Th carrier phase apatite showed that post‐shock temperatures of ?300 °C are necessary to explain observed losses. This temperature corresponds to the post‐shock temperature calculated for bulk rocks shocked at about 40 GPa. From our investigation, data survey, and modeling, we conclude that the shock event during launch of the meteorites is the principal cause for 4He loss.  相似文献   

19.
The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography‐mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot‐water extracts with high relative abundances of β‐alanine and γ‐amino‐n‐butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight‐chained amine‐terminal n‐ω‐amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of ?24‰ ± 6‰ for β‐alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n‐ω‐amino acids may be due to a high temperature Fischer‐Tropsch‐type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.  相似文献   

20.
Abstract‐ Noble gases have been measured in meteorites for more than 100 years. The last 50 years have been especially fruitful, with concentration and isotopic compositional analysis of He, Ne, Ar, Kr, and Xe making important contributions to meteorite research. Differently trapped noble gas components are the basis for understanding planetary atmospheres and even different stages of stellar evolution. Noble gases are a valuable tool to detect pairing of meteorite specimens or even to prove whether a rock is a meteorite or not. Noble gas data, however, are distributed over a large number of publications. Sometimes, only concentrations are given for selected isotopes or just a simple derivative quantity is published. We have tried to collect all available measurements of He, Ne, and Ar in meteorites. Here, we present the data in a form that will help easily calculate isotopic or elemental ratios for selected measurements. The present compilation contains all data available as of March 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号