首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mandler and Elkins‐Tanton ( 2013 ) recently proposed an upgraded magma ocean model for the differentiation history of the giant asteroid 4 Vesta. They show that a combination of both equilibrium crystallization and fractional crystallization processes can reproduce the major element compositions of eucritic melts and broadly the range of mineral compositions observed in diogenites. They assert that their model accounts for all the howardites, eucrites, and diogenites (HEDs), and use it to predict the crustal thickness and the proportions of the various lithologies. Here, we show that their model fails to explain the trace element diversity of the diogenites, contrary to their claim. The diversity of the heavy REE enrichment exhibited by the orthopyroxenes in diogenites is inconsistent with crystallization of these cumulates in either shallow magma chambers replenished by melts from a magma ocean or in a magma ocean. Thus, proportions of the various HED lithologies and the crustal thickness predicted from this model are not necessarily valid.  相似文献   

2.
Abstract— Available evidence strongly suggests that the HED (howardite, eucrite, diogenite) meteorites are samples of asteroid 4 Vesta. Abundances of the moderately siderophile elements (Ni, Co, Mo, W and P) in the HED mantle indicate that the parent body may have been completely molten during its early history. During cooling of a chondritic composition magma ocean, equilibrium crystallization is fostered by the suspension of crystals in a convecting magma ocean until the crystal fraction reaches a critical value near 0.80, when the convective system freezes and melts segregate from crystals by gravitational forces. The extruded liquids are similar in composition to Main Group and Stannern trend eucrites, and the last pyroxenes to precipitate out of this ocean (before convective lockup) span the compositional range of the diogenites. Subsequent fractional crystallization of a Main Group eucrite liquid, which has been isolated as a body of magma, produces the Nuevo Laredo trend and the cumulate eucrites. The predicted cumulate mineral compositions are in close agreement with phase compositions analyzed in the cumulate eucrites. Thus, eucrites and diogenites are shown to have formed as part of a simple and continuous crystallization sequence starting with a magma ocean environment on an asteroidal size parent body that is consistent with Vesta.  相似文献   

3.
Abstract— If Vesta is the parent body of the howardite, eucrite, and diogenite (HED) meteorites, then geo-chemical and petrologic constraints for the meteorites may be used in conjunction with astronomical constraints for the size and mass of Vesta to (1) determine the size of a possible metal core in Vesta and (2) model the igneous differentiation and internal structure of Vesta. The density of Vesta and petrologic models for HED meteorites together suggest that the amount of metal in the parent body is <25 mass%, with a best estimate of ~5%, assuming no porosity. For a porosity of up to 5% in the silicate fraction of the asteroid, the permissible metal content is <30%. These results suggest that any metal core in the HED parent body and Vesta is not unusually large. A variety of geochemical and other data for HED meteorites are consistent with the idea that they originated in a magma ocean. It appears that diogenites formed by crystal accumulation in a magma ocean cumulate pile and that most noncumulate eucrites (excepting such eucrites as Bouvante and Statinem) formed by subsequent crystallization of the residual melts. Modelling results suggest that the HED parent body is enriched in rare earth elements by a factor of ~2.5–3.5 relative to CI-chondrites and that it has approximately chondritic Mg/Si and Al/Sc ratios. Stokes settling calculations for a Vesta-wide, nonturbulent magma ocean suggest that early-crystallizing magnesian olivine, orthopyroxene, and pigeonite would have settled relatively quickly, permitting fractional crystallization to occur, but that later-crystallizing phases would have settled (or floated) an order of magnitude more slowly, allowing, instead, a closer approach to equilibrium crystallization for the more evolved (eucritic) melts. This would have inhibited the formation of a plagioclase-flotation crust on Vesta. Plausible models for the interior of Vesta, which are consistent with the data for HED meteorites and Vesta, include a metal core (<130 km radius), an olivine-rich mantle (~65–220 km thick), a lower crustal unit (~12–43 km thick) composed of pyroxenite, from which diogenites were derived, and an upper crustal unit (~23–42 km thick), from which eucrites originated. The present shape of Vesta (with ~60 km difference in the maximum and minimum radius) suggests that all of the crustal materials, and possibly some of the underlying olivine from the mantle, could have been locally excavated or exposed by impact cratering.  相似文献   

4.
We have performed an experimental and modeling study of the partial melting behavior of the HED parent body and of the fractional crystallization of liquids derived from its mantle. We estimated the mantle composition by assuming chondritic ratios of refractory lithophile elements, adjusting the Mg# and core size to match the density and moment of inertia of Vesta, and the compositions of Mg‐rich olivines found in diogenites. The liquidus of a mantle with Mg# (=100*[Mg/(Mg+Fe)]) 80 is ~1625 °C and, under equilibrium conditions, the melt crystallizes olivine alone until it is joined by orthopyroxene at 1350 °C. We synthesized the melt from our 1350 °C experiment and simulated its fractional crystallization path. Orthopyroxene crystallizes until it is replaced by pigeonite at 1200 °C. Liquids become eucritic and crystal assemblages resemble diogenites below 1250 °C. MELTS correctly predicts the olivine liquidus but overestimates the orthopyroxene liquidus by ~70 °C. Predicted melt compositions are in reasonable agreement with those generated experimentally. We used MELTS to determine that the range of mantle compositions that can produce eucritic liquids and diogenitic solids in a magma ocean model is Mg# 75–80 (with chondritic ratios of refractory elements). A mantle with Mg# ~ 70 can produce eucrites and diogenites through sequential partial melting.  相似文献   

5.
Numerous petrologic and geochemical studies so far on the howardite, eucrite, and diogenite (HED) meteorites have produced various crystallization scenarios for their parent body, believed to be the differentiated asteroid 4 Vesta. Structural analyses of diogenites can reveal important insights into postcrystallization deformation on the parent body. Recently published results (Tkalcec et al. 2013 ) of structural analysis on the olivine‐rich diogenite NWA 5480 reveal that it underwent solid‐state plastic deformation, although not at the base of a magma chamber. Dynamic mantle downwelling has been proposed as a plausible deformation mechanism (Tkalcec et al. 2013 ). The purpose of this study is to investigate whether the plastic deformation found in NWA 5480 is an isolated case. We expand the structural analysis on NWA 5480 and extend it to NWA 5784 and MIL 07001,6, two other samples of rare olivine‐rich diogenites, using electron‐backscattered‐diffraction (EBSD) techniques. Our EBSD results show that the diogenites analyzed in this study underwent solid‐state plastic deformation, confirming that the observed deformation of NWA 5480 was not an isolated case on the diogenite parent body. The lattice‐preferred orientations (LPOs) of olivine in NWA 5784 and NWA 5480 are clearly distinct from that typical for cumulate rocks at the base of magma chambers, indicating a different stress environment and a different deformation mechanism. The LPO of olivine in MIL 07001 is less conclusive. The structural results of this study suggest that plastic deformation occurred on the diogenite parent body at high temperatures (1273 < T ≤ 1573 K) in the solid state, i.e., after crystallization of the diogenites themselves, in a dynamic environment with active stress fields.  相似文献   

6.
Dawn has recently revealed that the surface of Vesta is heterogeneously covered by polymictic regoliths represented by mixtures of howardite, eucrite, and diogenite (HED) meteorites. Mixing relations of the HED suite are examined here using a new computational statistical approach of independent component analysis (ICA). We performed eight‐component ICA (Si, Ti, Al, Cr, Fe, Mn, Mg, and Ca) for 209 HED bulk‐rock compositions. The ICA results indicate that the HED bulk‐rock compositions can be reduced into three independent components (IC) and these IC vectors can reasonably explain compositional variation, petrographic observations, and the mixing relations of the HED suite. The IC‐1 vector represents a eucrite variation that extends from cumulate eucrite toward main‐group (MG) and incompatible‐element enriched eucrites. The IC‐2 vector represents a compositional variation of howardites that extends from diogenites to MG‐eucrites, indicating the well‐known two‐component mixing trend of diogenite and eucrite. The IC‐3 vector represents a compositional variation defined by diogenites and olivine‐bearing diogenites, suggesting mixing of olivine and orthopyroxene. Among the three ICs, the diogenite‐eucrite mixing trend IC‐2 is most statistically robust and dominates the compositional variations of the HED suite. Our ICA study further indicates that the combination of only three elements (Mg, Si, and Fe) approximates the eight‐component ICA model, and that the limited number of resolvable γ‐ray spectra obtained by the Dawn mission possibly discriminates olivine lithologies from the olivine‐free regolith breccias on the surface of Vesta.  相似文献   

7.
Abstract– A few relatively unbrecciated olivine‐rich diogenites consist of an equilibrium assemblage of olivine and magnesian orthopyroxene (harzburgite). More common diogenites with smaller amounts of olivine are breccias containing two distinct orthopyroxenes—one magnesian and one ferroan. These diogenites are mixtures of a harzburgite lithology that is more magnesian, with the “normal” orthopyroxenite lithology that is ferroan and may contain small amounts of plagioclase. Both lithologies likely formed by fractional crystallization in multiple plutons emplaced within the crust of asteroid 4 Vesta. Minor element trends in orthopyroxenes indicate that these plutons exhibited a range of compositions. We propose a revised taxonomy for the HED (howardites, eucrites, and diogenites) suite where all ultramafic samples are referred to as diogenites. Within this group, the prefixes dunitic, harzburgitic, and orthopyroxenitic are used to distinguish diogenites consisting of more than or equal to 90% olivine, olivine + orthopyroxene, and more than or equal to 90% orthopyroxene, respectively. The prefix polymict is used to describe brecciated mixtures of any of these rock types. The recognition that olivine is a significant phase in some diogenites is consistent with spectral interpretations of olivine in a deeply excavated crater on Vesta, and has important implications for the bulk composition and petrogenesis of that body.  相似文献   

8.
Abstract— According to a currently popular model for petrogenesis on the howardite, eucrite, and diogenite (HED) parent asteroid, the diogenites are not comagmatic with most eucrites but instead formed in separate orthopyroxenite-dominated plutons. This model can be tested for consistency with mass balance for MgO and FeO, assuming the overall diogenite/(diogenite + eucrite) ratio, d, of the parent asteroid is at least comparable to the average d for the eucrite + diogenite dominated howardite regolith breccias. Average mg# (=MgO/[MgO + FeO]) is much lower for eucrites, especially noncumulate eucrites, than for diogenites. Unless the diogenite parent magmas eventually produced a large proportion of low-mg# residual basalt and gabbro (RBG), the implied initial magma's mg# is vastly higher than that of any noncumulate eucrite. Starting from a source previously depleted by putative primary eucrite genesis, melt mg# can be estimated as a function of the exchange reaction KD and degree of melting. Using several very conservative assumptions (e.g., assuming that the total [MgO + FeO] concentration is nearly the same in the nascent melt as in the residual solids), the degree of melting required to yield a melt with mg# high enough to satisfy mass balance, without implying an RBG component that accounts for >50% of all eucrites, is an implausibly high 60–80 wt%. The separate orthopyroxenitic plutons (SOP) model also seems inconsistent with the uniform density of melts across the diogenite-eucrite compositional spectrum (2.77–2.82 g/cm3), which implies that diogenitic magmas should have been as capable as eucrites of extruding to form lavas. This difficulty cannot be reduced by simply assuming that later-formed magmas were systematically both more plutonic and more MgO-rich than earlier ones, because the plutonic cumulate eucrites equilibrated with melts systematically lower in mg# than noncumulate eucrites. Conceivably, the bulk mg# of the asteroid's silicate system was increased between primary-melt eucrite genesis and SOP diogenite genesis by graphite-fueled reduction of FeO. However, the graphite oxidation process generates a huge proportion of gas, which would have enhanced the buoyancy of the nascent diogenite-parent magmas, thus exacerbating the difficulty of achieving the implied high degrees of partial melting. To avoid these difficulties but still form most eucrites as rapidly cooled extrusives, I propose the NERD (noncumulate eucrites as extruded residua of diogenites) model. In this model, the diogenites form as early cumulates from a large magma system (probably a global “magma ocean”) that yields a large proportion of eucritic melt as residuum. This residual melt zone undergoes relatively little crystallization during a period when it is episodically tapped to produce extrusions, dikes and sills of rapidly cooled noncumulate eucrites. Slight (~5–10%) porosity in the nascent eucritic crust keeps it marginally buoyant over the residual melt zone. The common thermal metamorphism of noncumulate eucrites results from baking by superjacent flows during the episodic venting of the melt zone. The NERD model's greatest advantage is that it does not require implausibly high degrees of localized melting in the mature stages of igneous evolution of the HED asteroid.  相似文献   

9.
Abstract— Diogenites are recognized as a major constituent of the howardite, eucrite and diogenite (HED) meteorite group. Recently, several papers (Mittlefehldt, 1994; Fowler et al, 1994, 1995) have identified trace-element systematics in diogenites that appeared to mimic simple magmatic processes that involved large degrees of crystallization (up to 95% orthopyroxene) of basalt with extremely high normative hypersthene. Such a crystallization scenario linking all the diogenites is highly unlikely. The purpose of this study is to explore other possible models relating the diogenites. Computational major-element melting models of a variety of different potential bulk compositions for the eucrite parent body (EPB) mantle indicate that these compositions show a similar sequence in residuum mineral assemblage with increasing degrees of partial melting. Numerous bulk compositions would produce melts with Mg# appropriate for diogenitic parent magmas at low to moderate degrees of partial melting (15% to 30%). These calculations also show that melts with similar Mg# and variable incompatible element concentrations may be produced during small to moderate degrees of EPB mantle melting. The trace-element characteristic of the orthopyroxene in diogenites does not support a model for large amounts of fractional crystallization of a single “hypersthene normative” basaltic magma following either small-scale or large-scale EPB mantle melting. Small degrees of fractional crystallization of a series of distinct basaltic magmas are much more likely. Only two melting models that we considered hold any promise for producing different batches of “diogenitic magmas.” The first model involves the fractional melting of a homogeneous source that produces parental magmas to diogenites with an extensive range of incompatible elements and limited variations in Mg#. There are several requirements for this model to work. The first requirement of this model is that the Dorthopyroxene/melt must change during melting or crystallization to compress the range of incompatible elements in the calculated diogenitic magmas. The second prerequisite is that either some of the calculated diogenitic magmas are parental to eucrites or the Mg# in diogenitic magmas are influenced by slight changes in oxygen fugacity during partial melting. The second model involves batch melting of a source that reflects accretional heterogeneities capable of generating diogenitic magmas with the calculated Mg# and incompatible element contents. Both of these models require small to moderate degrees of partial melting that may limit the efficiency of core separation.  相似文献   

10.
Abstract— We report on the major and trace element abundances of 18 diogenites, and O‐isotopes for 3 of them. Our analyses extend significantly the diogenite compositional range, both in respect of Mg‐rich (e.g., Meteorite Hills [MET] 00425, MgO = 31.5 wt%) and Mg‐poor varieties (e.g., Dhofar 700, MgO = 23 wt%). The wide ranges of siderophile and chalcophile element abundances are well explained by the presence of inhomogeneously distributed sulfide or metal grains within the analyzed chips. The behavior of incompatible elements in diogenites is more complex, as exemplified by the diversity of their REE patterns. Apart from a few diogenite samples that contain minute amounts of phosphate, and whose incompatible element abundances are unlike the orthopyroxene ones, the range of incompatible element abundances, and particularly the range of Dy/Yb ratios in diogenites is best explained by the diversity of their parental melts. We estimate that the FeO/MgO ratios of the diogenite parental melts range from about 1.4 to 3.5 and therefore largely overlap the values obtained for non‐cumulate eucrites. Our results rule out the often accepted view that all the diogenites formed from parental melts more primitive than eucrites during the crystallization of a magma ocean. Instead, they point to a more complex history, and suggest that diogenites were derived from liquids produced by the remelting of cumulates formed from the magma ocean.  相似文献   

11.
Abstract— Many lines of evidence indicate that meteorites are derived from the asteroid belt but, in general, identifying any meteorite class with a particular asteroid has been problematical. One exception is asteroid 4 Vesta, where a strong case can be made that it is the ultimate source of the howardite‐eucrite‐diogenite (HED) family of basaltic achondrites. Visible and near‐infrared reflectance spectra first suggested a connection between Vesta and the basaltic achondrites. Experimental petrology demonstrated that the eucrites (the relatively unaltered and unmixed basaltic achondrites) were the product of approximately a 10% melt. Studies of siderophile element partitioning suggested that this melt was the residue of an asteroidal‐scale magma ocean. Mass balance considerations point to a parent body that had its surface excavated, but remains intact. Modern telescopic spectroscopy has identified kilometer‐scale “Vestoids” between Vesta and the 3:1 orbit‐orbit resonance with Jupiter. Dynamical simulations of impact into Vesta demonstrate the plausibility of ejecting relatively unshocked material at velocities consistent with these astronomical observations. Hubble Space Telescope images show a 460 km diameter impact basin at the south pole of Vesta. It seems that nature has provided multiple free sample return missions to a unique asteroid. Major challenges are to establish the geologic context of the HED meteorites on the surface of Vesta and to connect the remaining meteorites to specific asteroids.  相似文献   

12.
Abstract– The absence of dunite (>90 vol% olivine) in the howardite, eucrite, and diogenite (HED) meteorite suite, when viewed with respect to spectroscopic and petrologic evidence for olivine on Vesta, is problematic. Herein, we present petrologic, geochemical, and isotopic evidence confirming that Miller Range (MIL) 03443, containing 91 vol% olivine, should be classified with the HED clan rather than with mesosiderites. Similarities in olivine and pyroxene FeO/MnO ratios, mineral compositions, and unusual mineral inclusions between MIL 03443 and the diogenites support their formation on a common parent body. This hypothesis is bolstered by oxygen isotopic and bulk geochemical data. Beyond evidence for its reclassification, we present observations and interpretations that MIL 03443 is probably a crustal cumulate rock like the diogenites, rather than a sample of the Vestan mantle.  相似文献   

13.
The Dawn spacecraft mission has provided extensive new and detailed data on Vesta that confirm and strengthen the Vesta–howardite–eucrite–diogenite (HED) meteorite link and the concept that Vesta is differentiated, as derived from earlier telescopic observations. Here, we present results derived by newly calibrated spectra of Vesta. The comparison between data from the Dawn imaging spectrometer—VIR—and the different class of HED meteorites shows that average spectrum of Vesta resembles howardite spectra. Nevertheless, the Vesta spectra at high spatial resolution reveal variations in the distribution of HED‐like mineralogies on the asteroid. The data have been used to derive HED distribution on Vesta, reported in Ammannito et al. (2013), and to compute the average Vestan spectra of the different HED lithologies, reported here. The spectra indicate that, not only are all the different HED lithologies present on Vesta, but also carbonaceous chondritic material, which constitutes the most abundant inclusion type found in howardites, is widespread. However, the hydration feature used to identify carbonaceous chondrite material varies significantly on Vesta, revealing different band shapes. The characteristic of these hydration features cannot be explained solely by infalling of carbonaceous chondrite meteorites and other possible origins must be considered. The relative proportion of HEDs on Vesta's surface is computed, and results show that most of the vestan surface is compatible with eucrite‐rich howardites and/or cumulate or polymict eucrites. A very small percentage of surface is covered by diogenite, and basaltic eucrite terrains are relatively few compared with the abundance of basaltic eucrites in the HED suite. The largest abundance of diogenitic material is found in the Rheasilvia region, a deep basin, where it clearly occurs below a basaltic upper crust. However, diogenite is also found elsewhere; although the depth to diogenite is consistent with one magma ocean model, its lateral extent is not well constrained.  相似文献   

14.
The large collection of howardite‐eucrite‐diogenite (HED) meteorites allows us to study the initial magmatic differentiation of a planetesimal. We report Pb‐Pb ages of the unequilibrated North West Africa (NWA) 4215 and Dhofar 700 diogenite meteorites and their mass‐independent 26Mg isotope compositions (26Mg*) to better understand the timing of differentiation and crystallization of their source reservoir(s). NWA 4215 defines a Pb‐Pb age of 4484.5 ± 7.9 Myr and has a 26Mg* excess of +2.3 ± 1.6 ppm whereas Dhofar 700 has a Pb‐Pb age of 4546.4 ± 4.7 Myr and a 26Mg* excess of +25.5 ± 1.9 ppm. We interpret the young age of NWA 4215 as a thermal overprint, but the age of Dhofar 700 is interpreted to represent a primary crystallization age. Combining our new data with published Mg isotope and trace element data suggests that approximately half of the diogenites for which such data are available crystallized within the first 1–2 Myr of our solar system, consistent with a short‐lived, early‐formed magma ocean undergoing convective cooling. The other half of the diogenites, including both NWA 4215 and Dhofar 700, are best explained by their crystallization in slowly cooled isolated magma chambers lasting over at least ~20 Myr.  相似文献   

15.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   

16.
Here, we construct a comprehensive howardite, eucrite, and diogenite (HED) bulk chemistry data set to compare with Dawn data. Using the bulk chemistry data set, we determine four gamma‐ray/neutron parameters in the HEDs (1) relative fast neutron counts (fast counts), (2) macroscopic thermal neutron absorption cross section (absorption), (3) a high‐energy gamma‐ray compositional parameter (Cp), and (4) Fe abundance. These correspond to the four measurements of Vesta made by Dawn's Gamma Ray and Neutron Detector (GRaND) that can be used to discern HED lithologic variability on the Vestan surface. We investigate covariance between fast counts and average atomic mass (<A>) in the meteorite data set, where a strong correlation (r2 = 0.99) is observed, and we demonstrate that systematic offsets from the fast count/<A> trend are linked to changes in Fe and Ni concentrations. To compare the meteorite and GRaND data, we investigate and report covariance among fast counts, absorption, Cp, and Fe abundance in the HED meteorite data set. We identify several GRaND measurement spaces where the Yamato type B diogenites are distinct from all other HED lithologies, including polymict mixtures. The type B's are diogenites that are enriched in Fe + pigeonite + diopside ± plagioclase, relative to typical, orthopyroxenitic diogenites. We then compare these results to GRaND data and demonstrate that regions north of ~70°N latitude on Vesta (including the north pole) are consistent with type B diogenites. We propose two models to explain type B diogenite compositions in the north (1) deposition as Rheasilvia ejecta, or (2) type B plutons that were emplaced at shallow depths in the north polar region and sampled by local impacts. Lastly, using principal component (PC) analysis, we identify unique PC spaces for all HED lithologies, indicating that the corresponding GRaND measurables may be used to produce comprehensive lithologic maps for Vesta.  相似文献   

17.
Abstract— Asteroid 4 Vesta, believed to be the parent body of the howardite, eucrite, and diogenite (HED) meteorites, will be investigated by the Dawn orbiting spacecraft. Dawn carries a gamma ray and neutron detector (GRaND) that will measure and map some major‐ and trace‐element abundances. Drawing on HED geochemistry, we propose a mixing model that uses element ratios appropriate for the interpretation of GRaND data. Because the spatial resolution of GRaND is relatively coarse, the analyzed chemical compositions on the surface of Vesta will likely reflect mixing of three endmember components: diogenite, cumulate eucrite, and basaltic eucrite. Reliability of the mixing model is statistically investigated based on published whole‐rock data for HED meteorites. We demonstrate that the mixing model can accurately estimate the abundances of all the GRaND‐analyzed major elements, as well as of minor elements (Na, Cr, and Mn) not analyzed by this instrument. We also show how a similar mixing model can determine the modal abundance of olivine, and we compare estimated and normative olivine data for olivine‐bearing diogenites. By linking the compositions of well‐analyzed HED meteorites with elemental mapping data from GRaND, this study may help constrain the geological context for HED meteorites and provide new insight into the magmatic evolution of Vesta.  相似文献   

18.
The Northwest Africa (NWA) 773 clan of lunar meteorite stones are coarse‐grained breccias that provide an opportunity to examine a lunar igneous system that includes inferred intrusive and extrusive lithologies, possibly related through a common liquid line of descent from a single source region. Such extensive sampling of a single very low‐Ti (VLT) magmatic system on the Moon is unprecedented among the lunar samples. This study focuses on the olivine gabbro (OG), anorthositic gabbro (AG), and ferroan gabbro (FG) lithologies variably contained in NWA 773, NWA 2727, NWA 3160, NWA 3170, NWA 7007, and NWA 10656. Mineral compositions in the three gabbros indicate the crystallization sequence OG → AG → FG. Petrologic modeling of these three lithologies, and an olivine phyric basalt that also occurs in the NWA 773 clan, however, suggests that the relationship among the lithologies is more complex. The OG and basalt can be modeled as originating from a VLT KREEP‐bearing parental melt similar to the Apollo 14 Green Glass b1 composition through mainly equilibrium crystallization. The AG and FG, however, do not fit this simple model and require either a more complex crystallization sequence involving fractional crystallization, magma chamber recharge, or perhaps heterogeneity in the source region.  相似文献   

19.
Abstract— We determined the cosmic-ray exposure age of 20 diogenites from measured cosmogenic noble gas isotopes and calculated production rates of 3He, 21Ne and 38Ar. The production rates were calculated on the basis of the measured chemical composition and the cosmogenic 22Ne/21Ne ratio of each sample. The shielding conditions of each sample were also checked on the basis of the measured 10Be and 26AI concentrations. The exposure ages range from 6 to 50 Ma but do not form a continuous distribution: ten ages cluster at 21–25 Ma and four at 35–42 Ma. The two diogenite clusters coincide with the 22 Ma and 38 Ma peaks in the exposure age distribution of eucrites and howardites. After the selection from literature data of 32 eucrites and 11 howardites with reliable ages, we find a total of 23 howardite, eucrite and diogenite (HED) group meteorites at 20–25 Ma and 10 at 35–42 Ma. The shape of the two peaks is consistent with single impact events, and random number statistics show that they are statistically significant at the 99% level. Altogether, this provides strong evidence for two major impact events 22 Ma and 39 Ma ago. Although these two events can explain more than half of all HED exposure ages, it takes at least five impact events to explain all ages <50 Ma. An impact frequency of one per 10 Ma corresponds to projectiles of at least 2–4 km in diameter for Vesta and of 60–300 m for the 100× smaller Vesta-derived “vestoids.” Based on the HED exposure-age distribution, the size distribution of the main-belt asteroids and the difference in size between Vesta and the kilometer size vestoids, we favor Vesta as the major source of HED meteorites, although some of the meteorites may have been ejected from the vestoids rather than directly from Vesta.  相似文献   

20.
Abstract— Nakhla contains crystallized melt inclusions that were trapped in augite and olivine when these phases originally formed on Mars. Our study involved rehomogenization (slow‐heating and fast‐heating) experiments on multiphase melt inclusions in Nakhla augite. We studied melt inclusions trapped in augite because this phase re‐equilibrated with the external melt to a lesser extent than olivine and results could be directly compared with previous Nakhla melt inclusion studies. Following heating and homogenization of encapsulated melt inclusions, single mineral grains were mounted and polished to expose inclusions. Major element chemistry was determined by electron microprobe. The most primitive melt inclusion analyzed in Nakhla NA03 is basaltic and closely matches previously reported nakhlite parent melt compositions. MELTS equilibrium and fractional crystallization models calculated for NA03 and previous Nakhla parent melt estimates at QFM and QFM‐1 produced phase assemblages and compositions that can be compared to Nakhla. Of these models, equilibrium crystallization of NA03 at QFM‐1 produced the best match to mineral phases and compositions in Nakhla. In all models, olivine and augite co‐crystallize, consistent with the hypothesis that olivine is not xenocrystic but has undergone subsolidus re‐equilibration. In addition, measured melt inclusion compositions plot along the MELTS‐calculated liquid line of descent and may represent pockets of melt trapped at various stages during crystallization. We attempt to resolve discrepancies between previous estimates of the Nakhla parental melt composition and to reinterpret the results of a previous study of rehomogenized melt inclusions in Nakhla. Melt inclusions demonstrate that Nakhla is an igneous rock whose parent melt composition and crystallization history reflect planetary igneous processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号