首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current database of craterform structures in Fennoscandia contains 22 structures of impact origin and about fifty other structures which lack sufficient evidence for impact. The discovery rate of new structures has been one or two per year during the past ten years. The proven impact structures are located in southern Fennoscandia and the majority have been found in Proterozoic target rocks. The age of the structures varies from prehistoric to ≤ 1000 Ma and their diameters (D) from 0.04 km to 55 km. Nine of the structures contain impact melt. A characteristic feature of the Fennoscandian impact record is a relatively large number of small (≤ 5 km) but old (> 200 Ma) structures: this is a result of success of geophysical methods to discover small but old impact structures in an eroded shield covered with relatively thin overburden. Some of the large circular structures in satellite images and/or in geophysical maps may represent deeply eroded scars of very old impacts, but due to the lack of shock metamorphic features, impact-generated rocks or identified ejecta layers, they cannot yet be classified as impact sites. Two huge structures are proposed here as possible impact sites on the basis of circular satellite images and distinct geophysical anomalies: the Lycksele structure in northern Sweden (D ~ 120 km, see also Witschard, 1984) and the Valga structure in Latvia/Estonia (D ~ 180 km). However, endogeneous explanations, like buried granites, basement domings, or fault-bounded blocks are also possible for these structures. Hints, such as distal ejecta layers or impact produced breccia dykes, of an Archaean or Early Proterozoic impact structure have not been found in Fennoscandia so far. New ways of searching for these structures are proposed with particular emphasis on high-resolution integrated geophysical methods. The impact cratering rate in Fennoscandia is ~ 2.0 · 10?14 km?2 a?1 (for craters with D > 3 km) corresponding to about two events per every 100 Ma for the last 700 Ma. Due to erosion, this is a minimal estimate but is higher than the global rate probably due to strong research activity for finding impact structures in Fennoscandia.  相似文献   

2.
The current database of craterform structures in Fennoscandia contains 22 structures of impact origin and about fifty other structures which lack sufficient evidence for impact. The discovery rate of new structures has been one or two per year during the past ten years. The proven impact structures are located in southern Fennoscandia and the majority have been found in Proterozoic target rocks. The age of the structures varies from prehistoric to 1000 Ma and their diameters (D) from 0.04 km to 55 km. Nine of the structures contain impact melt. A characteristic feature of the Fennoscandian impact record is a relatively large number of small ( 5 km) but old (> 200 Ma) structures: this is a result of success of geophysical methods to discover small but old impact structures in an eroded shield covered with relatively thin overburden. Some of the large circular structures in satellite images and/or in geophysical maps may represent deeply eroded scars of very old impacts, but due to the lack of shock metamorphic features, impact-generated rocks or identified ejecta layers, they cannot yet be classified as impact sites. Two huge structures are proposed here as possible impact sites on the basis of circular satellite images and distinct geophysical anomalies: the Lycksele structure in northern Sweden (D ~ 120 km, see also Witschard, 1984) and the Valga structure in Latvia/Estonia (D ~ 180 km). However, endogeneous explanations, like buried granites, basement domings, or fault-bounded blocks are also possible for these structures. Hints, such as distal ejecta layers or impact produced breccia dykes, of an Archaean or Early Proterozoic impact structure have not been found in Fennoscandia so far. New ways of searching for these structures are proposed with particular emphasis on high-resolution integrated geophysical methods. The impact cratering rate in Fennoscandia is ~ 2.0 · 10–14 km–2 a–1 (for craters with D > 3 km) corresponding to about two events per every 100 Ma for the last 700 Ma. Due to erosion, this is a minimal estimate but is higher than the global rate probably due to strong research activity for finding impact structures in Fennoscandia.  相似文献   

3.
The concept of block tectonics provides a framework for understanding many aspects of Tharsis and adjoining structures. This Tharsis block tectonics on Mars is manifested partly by mantle-related doming and partly by response to loading by subsequent volcanic construction. Although the origin of the volcanism from beneath Tharsis is a subject of controversy explanations have to include inhomogenities in Martian internal structure, energy distribution, magma accumulation and motion below the lithosphere. Thermal convection can be seen as a necessary consequence for transient initial phase of Martian cooling. This produced part of the elevated topography with tensional stresses and graben systems radial to the main bulge. The linear grabens, radial to the Tharsis center, can be interpreted to indicate rift zones that define the crustal block boundaries. The load-induced stresses may then have contributed on further graben and ridge formation over an extended period of time.On leave from Dept. of Astronomy University of Oulu, Oulu, Finland.  相似文献   

4.
The tectonics of the Tharsis and adjoining areas is considered to be associated with the convection in the Martian mantle. Convection and mantle plume have been responsible for the primary uplift and volcanism of the Tharsis area. The radial compressional forces generated by the tendency for downslope movement of surface strata, vertical volcanic intrusions and traction of mantle spreading beneath Tharsis were transmitted through the lithosphere to form peripheral mare ridge zones. The locations of mare ridges were thus mainly controlled by the Tharsis-radial compression. The load-induced stresses then contributed on further ridge formation over an extended period of time by the isostatic readjustment which was reponsible for long-term stresses in the adjoining areas. Extrusions, changes in internal temperature and possible phase changes may also have caused changes in mantle volume giving rise to additional compressional forces and crustal deformations.On leave from Dept. of Astronomy, University of Oulu, Oulu, Finland  相似文献   

5.
Abstract— Impact craters are not always circular; sometimes their rims are composed of several straight segments. Such polygonal impact craters (PICs) are controlled by pre‐existing target structures, mainly faults or other similar planes of weakness. In the Argyre region, Mars, PICs comprise ? 17% of the total impact crater population (>7 km in diameter), and PICs are relatively more common in older geologic units. Their formation is mainly controlled by radial fractures induced by the Argyre and Ladon impact basins, and to a lesser extent by the basin‐concentric fractures. Also basin‐induced conjugate shear fractures may play a role. Unlike the PICs, ridges and graben in the Argyre region are mostly controlled by Tharsis‐induced tectonism, with the ridges being concentric and graben radial to Tharsis. Therefore, the PICs primarily reflect an old impact basin‐centered tectonic pattern, whereas Tharsis‐centered tectonism responsible for the graben and the ridges has only minor influence on the PIC rim orientations. According to current models of PIC formation, complex PICs should form through a different mechanism than simple PICs, leading to different orientations of straight rim segments. However, when simple and complex PICs from same areas are studied, no statistically significant difference can be observed. Hence, in addition to enhanced excavation parallel to the strike of fractures (simple craters) and slumping along the fracture planes (complex craters), we propose a third mechanism involving thrusting along the fracture planes. This model is applicable to both simple and small complex craters in targets with some dominating orientations of structural weakness.  相似文献   

6.
The Tharsis rise on Mars with a diameter of about 8000 km and an elevation up to 10 km shows extensive volcanism and an extensional fracture system. Other authors explained this structure by (I) an uplift due to mantle processes and by (II) volcanic construction. Gravity models of four profiles are in accordance with a total Airy isostatic compensation of the whole rise with mean crustal thicknesses of 50 km and 100 km. But two regions exhibit significant mass deficits: (i) the area between Olympus Mons and the three large Tharsis volcanoes and (ii) central Tharsis. This can be explained by (1) a heated upper mantle, (2) a chemically modified upper mantle, (3) a crustal thickening, or (4) a combination of these three processes. Crustal thickening is mainly a constructional process, but the mass deficit should contribute to a certain degree of uplift causing the extensional area of Labyrinthus Noctis. Gravity modelling results in a different isostatic state of the three Tharsis volcanoes. Pavonis Mons is not compensated, Ascraeus Mons is highly or totally compensated, and Arsia Mons is medium or not compensated. The large, flat volcanic structure Alba Patera has been explained by a hot spot with an evolution of a mantle diapir.The results have shown that the Tharsis rise is a very complex structure. The central and eastern part of the rise is characterized by extensional features and a mass deficit (Extensional Province). The western part is dominated by many volcanic features and a central elongated mass deficit (Volcanic Province). The northern part consists of Alba Patera. It seems unlikely that the whole rise has been generated by one stationary large axisymmetric plume or hot spot. There could have been one or more active hot spots with an evolution in space and time.Contribution Nr. 421, Institut für Geophysik der Universität Kiel, Germany.  相似文献   

7.
Observations of ridge-fault crosscutting relationships on the ridged plains units surrounding the Tharsis region of Mars have led to the development of a classification scheme involving three distinct types of intersections. Ridges crosscut by faults are designated Type C and account for 81% of the observed intersections. Ridges terminated at one end by a fault (Type T), as well as those superposed on grabens (Type S), are less numerous. Interpretation of the morphology of these intersections and the angles of intersection between ridges and faults with radial trends to major topographic features in the Tharsis region have led to the following conclusions: (1) the major ridge forming events in the Tharsis region were roughly coincident with, and in some cases possibly prior to, the extensional events that produced the faulting of the Tempe and Mareotis regions, the Coprates and Memnonia regions, and the rifting of Valles Marinrris; (2) the compressional events that formed most of the ridges are restricted in time both by the irrelationship to regional extensional events and by the age of the units on which they formed. The suggestion that compressional ridges are a result of a single long term viscoelastic response of the lithosphere to loading of the crust is not supported by this study. A model involving one or more isostatically compensated uplifts and subsequent relaxation of the crust after the emplacement of the ridged plains volcanic units is favored.  相似文献   

8.
9.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil.  相似文献   

10.
Martian altitudes were measured by radar during the oppositions of 1971 and 1963 using the 64-m antenna at Goldstone (California). The resultant topographic profiles substantiate a zonal classification of the volcanic flows blanketing the south flanks of Arsia Mons, and they confirm the existence of a secondary, parasitic shield attached from the SSW to the main Arsia shield. The secondary shield is about 400 km in diameter at its base and at least 4 km high at its center. South of Valles Marineris, the Tharsis plateau is bounded by the approximate longitudes of 80° in the east and 140° in the west. In the Sinai Planum, closely adjacent to Coprates Chasma, another rise has been detected, bounded by longitudes of 55° in the east and 80° in the west. A volcanic shield of diameter 80 km, capped with a 22 km caldera has been identified near the crest of the rise. Topographic highs of about 1 km are associated with heavily faulted tracts such as Claritas Fossae. The distribution and orientation of the lunar-mare-like ridges in Sinai Planum appear to be independent of the regional gradients. Segments of the chaotic terrain at the eastern terminus of Valles Marineris are located as much as 6 km below the level of the surrounding plains.  相似文献   

11.
Abstract— The dimensions of large craters formed by impact are controlled to a large extent by gravity, whereas the volume of impact melt created during the same event is essentially independent of gravity. This “differential scaling” fosters size-dependent changes in the dynamics of impact-crater and basin formation as well as in the final morphologies of the resulting structures. A variety of such effects can be observed in the lunar cratering record, and some predictions can be made on the basis of calculations of impact melting and crater dimensions. Among them are the following: (1) as event magnitude increases, the volume of melt created relative to that of the crater will grow, and more will be retained inside the rim of the crater or basin. (2) The depth of melting will exceed the depth of excavation at diameters that essentially coincide with both the inflection in the depth-diameter trend and the simple-to-complex transition. (3) The volume of melt will exceed that of the transient cavity at a cavity diameter on the order of the diameter of the Moon; this would arguably correspond to a Moon-melting event. (4) Small lunar craters only rarely display exterior flows of impact melt because the relatively small volumes of melt created can become choked with clasts, increasing the melt's viscosity and chilling it rapidly. Larger craters and basins should suffer little from such a process. (5) Deep melting near the projectile's axis of penetration during larger events will yield a progression in central-structure morphology; with growing event magnitude, this sequence should range from single peaks through multiple peaks to peak rings. (6) The minimum depth of origin of central-peak material should coincide with the maximum depth of melting; the main central peak in a crater the size of Tycho should have had a preimpact depth of close to 15 km.  相似文献   

12.
13.
Morphological and structural data from the whole Tharsis province suggest that a number of shallow grabens radially oriented about the Tharsis bulge on Mars are underlain by dykes, which define giant radiating swarms similar to, e.g. the Mackenzie dyke swarm of the Canadian shield. Mechanisms for graben formation are proposed, and the depth, width, and height of the associated dykes are estimated. Structural mapping leads to define successive stages of dyke emplacement, and provide stress-trajectory maps that indicate a steady source of the regional stress during the whole history of the Tharsis province. A new tectonic model of Tharsis is presented, based on an analogy with dyke swarms on the Earth that form inside hot spots. This model successfully matches the following features: (1) the geometry of the South Tharsis Ridge Belt, which may have been a consequence of the compressional stress field at the boundary between the uplifted and non-uplifted areas in the upper part of the lithosphere at the onset of hot spot activity; (2) extensive lava flooding, interpreted as a consequence of the high thermal anomaly at the onset of plume (hot spot) activity; (3) wrinkle ridge geometry in the Tharsis hemisphere, the formation of which is interpreted as a consequence of buoyant subsidence of the brittle crust in response to the lava load; (4) Valles Marineris limited stretching by preliminary passive rifting, and uplift, viewed as a necessary consequence of adiabatic mantle decompression induced by stretching. The geometrical analysis of dyke swarms suggests the existence of a large, Tharsis-independent extensional state of stress during all the period of tectonic activity, in which the minimum compressive stress is roughly N---S oriented. Although magmatism must have loaded the lithosphere significantly after the plume activity ceased and be responsible for additional surface deformations, there is no requirement for further loading stress to explain surficial features. Comparison with succession of magmatic and tectonic events related to hot spots on the Earth suggests that the total time required to produce all the surface deformation observed in the Tharsis province over the last 3.8 Ga does probably not exceed 10 or 15 Ma.  相似文献   

14.
The paradigm of an ancient warm, wet, and dynamically active Mars, which transitioned into a cold, dry, and internally dead planet, has persisted up until recently despite published Viking-based geologic maps that indicate geologic and hydrologic activity extending into the Late Amazonian epoch. This paradigm is shifting to a water-enriched planet, which may still exhibit internal activity, based on a collection of geologic, hydrologic, topographic, chemical, and elemental evidences obtained by the Viking, Mars Global Surveyor (MGS), Mars Odyssey (MO), Mars Exploration Rovers (MER), and Mars Express (MEx) missions. The evidence includes: (1) stratigraphically young rock materials such as pristine lava flows with few, if any, superposed impact craters; (2) tectonic features that cut stratigraphically young materials; (3) features with possible aqueous origin such as structurally controlled channels that dissect stratigraphically young materials and anastomosing-patterned slope streaks on hillslopes; (4) spatially varying elemental abundances for such elements as hydrogen (H) and chlorine (Cl) recorded in rock materials up to 0.33 m depth; and (5) regions of elevated atmospheric methane. This evidence is pronounced in parts of Tharsis, Elysium, and the region that straddles the two volcanic provinces, collectively referred to here as the Tharsis/Elysium corridor. Based in part on field investigations of Solfatara Crater, Italy, recommended as a suitable terrestrial analog, the Tharsis/Elysium corridor should be considered a prime target for Mars Reconnaissance Orbiter (MRO) investigations and future science-driven exploration to investigate whether Mars is internally and hydrologically active at the present time, and whether the persistence of this activity has resulted in biologic activity.  相似文献   

15.
Observations of the Tharsis region of Mars with the 12.6-cm radar at Arecibo Observatory have yielded radar echoes which are highly depolarizes and which are, in terms of total echo power, dominated by diffuse rather than quasi-specular backscattering. The observations were made on February 7, 8, and 9, 1980, and the subradar track extended from 77 to 126°W Longitude at 22°N Latitude. Dual-polarized reception was employed, i.e., the echo was received in the same sense of circular polarization as transmitted (“depolarized” sense) as well as in the opposite (“polarized”) sense. The disk-integrated ratio of depolarized power to polarized power averages 0.37 and the ratio of diffuse power to quasi-specular power averages 3.2. The depolarized spectra are dominated by a broad “enhancement” identified primarily with echoes from the Tharsis Ridge, implying that extensive areas of Tharsis are rough on decimeter scales. The major Tharsis shield volcanoes are candidates for sources of strong depolarization, although they alone cannot account for the entire depolarization enhancement.  相似文献   

16.
L.S. Crumpler  J.C. Aubele 《Icarus》1978,34(3):496-511
Analysis of Viking Orbiter data suggests that Arsia Mons, Pavonis Mons, and Ascreus Mons, three large shield volcanoes of the Tharsis volcanoes of Mars, have had similar evolutionary trends. Arsia Mons appears to have developed in the following sequence: (1) construction of a main shield volcano, (2) outbreak of parasitic eruption centers on the northeast and southwest flanks, (3) volcano-tectonic subsidence of the summit and formation of concentric fractures and grabens, possibly by evacuation of an underlying magma chamber during eruption of copious lavas from parasitic eruption centers on the northeast and southwest flanks, and (4) continued volcanism along a fissure or rift bisecting the main shield, resulting in flooding of the floor of the volcano-tectonic depression and inundation of the northeast and southwest flanks by voluminous lavas locally forming parasitic shields. In terms of this sequence Pavonis Mons has developed to stage (3) and Ascreus Mons has evolved to stage (2). This interpretation is supported by crater frequency-diameter distributions in the 0.1? to 3.0 km-diameter range.  相似文献   

17.
The climatic impact of volcanic activity on the Earth and Mars is considered and a comparative analysis is made. The effect of gaseous components and of aerosols, formed in the process of the evolution of volcanic cloud, on the greenhouse effect and climate on the Earth and Mars is analyzed. A numerical modelling has shown that the climatic impact of volcanic activity depends on the optical properties (the extent of opacity of the atmospheric gaseous components and on the intensity of volcanic activity). In connection with sporadic variations in the intensity of volcanic activity, a temporal modulation of climate takes place with alternating periods of warming and cooling. An important role of SO2 and volcanic aerosols in the formation of climate in the presence of evolution of the Earth and Mars is revealed.  相似文献   

18.
《Icarus》1981,45(2):304-319
Volcanism in the Tharsis province of Mars occurred in several different areas and was generally continuous without large time intervals between eruptive episodes. Major lava flow units are numerous and extensive, but relatively thin. In many places, impact craters on buried surfaces project above younger flows that overlie them. A new application of crater dating methods has been developed to aid in the identification of these buried surfaces and to determine their lateral extent. The technique is especially adaptable to the Tharsis region where the stratigraphic succession of major flow units has been established by detailed geologic mapping. Knowledge of the overall stratigraphy allows correlations to be made between known and unknown surfaces by comparing their crater frequencies at diameters large enough to insure their recognition on the buried unit. The method has been applied to aid in the restoration of buried rock units and to construct a series of paleostratigraphic maps showing the sequence of major eruptive events in the Tharsis region.  相似文献   

19.
The crustal dichotomy and the Tharsis rise are the most prominent topographic features on Mars. The dichotomy is largely an expression of different crustal thicknesses in the northern and southern hemispheres, while Tharsis is centered near the equator at the dichotomy boundary. However, the cause for the orientation of the dichotomy and the equatorial location of Tharsis remains poorly understood. Here we show that the crustal thickness variations associated with the dichotomy may have driven true polar wander, establishing the north-south orientation of the dichotomy very early in martian history. Such a reorientation that placed the dichotomy boundary near the equator would also have constrained the Tharsis region on the dichotomy boundary to have originated near the equator. We present a scenario for the early generation and subsequent reorientation of the hemispheric dichotomy, although the reorientation is independent of the formation mechanism. Our results also have implications for the sharply different remanent magnetizations between the two hemispheres.  相似文献   

20.
The Deep Impact oblique impact cratering experiment   总被引:1,自引:0,他引:1  
The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ∼5mp (projectile masses) of water ice or 6mp of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in addition to silicates. Observed molecular species in the initial self-luminous vapor plume likely represent recombination products from completely dissociated target materials. The crater produced by the impact can be estimated from Earth-based observations of total ejected mass to be 130-220 m in diameter. This size range is consistent with a 220 m-diameter circular feature at the point of impact visible in highly processed, deconvolved HRI images. The final crater, however, may resemble an inverted sombrero-hat, with a deep central pit surrounded by a shallow excavation crater. Excavated distal material observed from the Earth was likely from the upper few meters contrasted with ballistic ejecta observed from the DI flyby, which included deep materials (10-30 m) within the diffuse plume above the crater and shallower (5-10 m) materials within the ejecta curtain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号