首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Several types of multiphase solid (MS) inclusions are identified in garnet from ultrahigh‐pressure (UHP) eclogite in the Dabie orogen. The mineralogy of MS inclusions ranges from pure K‐feldspar to pure quartz, with predominance of intermediate types consisting of K‐feldspar + quartz ± silicate (plagioclase or epidote) ± barite. The typical MS inclusions are usually surrounded with radial cracks in the host garnet, similar to where garnet contains relict coesite. Barite aggregates display significant heterogeneity in major element composition, with total contents of only 57–73% and highly variable SiO2 contents of 0.32–25.85% that are positively correlated with BaO and SO3 contents. The occurrence of MS inclusions provides petrographic evidence for partial melting in the UHP metamorphic rock. The occurrence of barite aggregates with variably high SiO2 contents suggests the coexistence of aqueous fluid with hydrous melt under HP eclogite facies conditions. Thus, local dehydration melting is inferred to take place inside the UHP metamorphic slice during continental collision. This is ascribed to phengite breakdown during ‘hot’ exhumation of the deeply subducted continental crust. As a consequence, the aqueous fluid is internally buffered in chemical composition and its local sink is a basic trigger to the partial melting during the continental subduction‐zone metamorphism.  相似文献   

2.
Composite multiphase solid (MS) inclusions composed of carbonate and silicate minerals have been found for the first time in metamorphic garnet from ultrahigh‐P eclogite from the Dabie orogen. These inclusions are morphologically euhedral to subhedral, and some show relatively regular shapes approaching the negative crystal shape of the host garnet. Radial fractures often occur in garnet hosting the inclusions. The inclusions are primarily composed of variable proportions of carbonate and silicate minerals such as calcite, quartz, K‐feldspar and plagioclase, with occasional occurrences of magnetite, zircon and barite. They are categorized into two groups based on the proportions of carbonate and silicate phases. Group I is carbonate‐dominated with variable proportions of silicate minerals, whereas Group II is silicate‐dominated with small proportions of carbonates. Trace element analysis by LA‐ICPMS for the two groups of MS inclusions yields remarkable differences. Group I inclusions exhibit remarkably lower REE contents than Group II inclusions, with significant LREE enrichment and large fractionation between LREE and HREE in the chondrite‐normalized REE diagram. In contrast, Group II inclusions show rather flat REE patterns with insignificant fractionation between LREE and HREE. In the primitive mantle‐normalized spidergram, Group I inclusions exhibit positive anomalies of Zr and Hf, whereas Group II inclusions show negative anomalies of Zr and Hf. Nevertheless, both groups exhibit positive anomalies of Ba, U, Pb and Sr, but negative anomalies of Nb and Ta, resembling the composition of common continental crust. Group I inclusions have higher Ba and U contents than Group II inclusions. Combined with petrological observations, the two groups of MS inclusions are interpreted as having crystallized from composite silicate and carbonate melts during continental subduction‐zone metamorphism. The differences in trace element composition between the two groups are primarily attributed to the proportions of carbonate and silicate phases in the MS inclusions. The silicate melts were derived from the breakdown of hydrous minerals such as paragonite and phengite, whereas the occurrence of carbonate melts indicates involvement of carbonate minerals in the partial melting and thus has great bearing on recycling of supracrustal carbon into the mantle. The coexistence of silicate and carbonate melts in the eclogitic garnet provides insights into the nature of hydrous melts in the subduction factory.  相似文献   

3.
An integrated study of U–Pb ages and trace elements was carried out for titanite and zircon from ultrahigh‐pressure (UHP) metagranites in the Sulu orogen, east‐central China. The results provide constraints on the composition of metamorphic fluids during the exhumation of deeply subducted continental crust. Titanite has two domain types based on REE patterns and trace element variations, Ttn‐I and Ttn‐II respectively. These two domains show indistinguishable U–Pb ages of 232 ± 14 to 220 ± 8 Ma, in general agreement with anatectic zircon U–Pb ages of 223 ± 4 to 219 ± 2 Ma for the partial melting event during early exhumation. The Ttn‐I domains have significantly higher REE, Th, Ta and Sr, and higher Th/U ratios than the Ttn‐II domains, indicating that the two domains have grown from metamorphic fluids with different compositions. For the Ttn‐I domains, Zr‐in‐titanite thermometry yields high temperatures of 773–851 °C at 2.5 GPa, and petrographic observations reveal the presence of melt pseudomorphs. Thus, they are interpreted to have grown from hydrous melts in the early exhumation stage. In contrast, the Ttn‐II domains were texturally equilibrated with amphibolite facies minerals such as biotite and plagioclase and contain inclusions of plagioclase and quartz. The Zr‐in‐titanite thermometry yields lower temperatures of 627–685 °C at 1.0 GPa. In combination with their REE patterns, they are interpreted to have grown from aqueous solutions at amphibolite facies metamorphic conditions during further exhumation. The differences in Th and Sr contents are prominent between the Ttn‐I and Ttn‐II domains, signifying the compositional difference between the hydrous melts and aqueous solutions. Therefore, the polygenetic titanite in the UHP metamorphic rocks provides insights into the geochemical property of metamorphic fluids during the continental subduction‐zone processes.  相似文献   

4.
Metamorphic dehydration and partial melting are two important processes during continental collision. They have significant bearing on element transport at the slab interface under subduction‐zone P–T conditions. Petrological and geochemical insights into the two processes are provided by a comprehensive study of leucocratic veins in ultrahigh‐pressure (UHP) metamorphic rocks. This is exemplified by this study of a polymineralic vein within phengite‐bearing UHP eclogite in the Dabie orogen. The vein is primarily composed of quartz, kyanite, epidote and phengite, with minor accessory minerals such as garnet, rutile and zircon. Primary multiphase solid inclusions occur in garnet and epidote from the both vein and host eclogite. They are composed of quartz ± K‐feldspar ± plagioclase ± K‐bearing glass and exhibit irregular to negative crystal shapes that are surrounded by weak radial cracks. This suggests their precipitation from solute‐rich metamorphic fluid/melt that involved the reaction of phengite breakdown. Zircon U–Pb dating for the vein gave two groups of concordant ages at 217 ± 2 and 210 ± 2 Ma, indicating two episodes of zircon growth in the Late Triassic. The same minerals from the two rocks give consistent δ18O and δD values, suggesting that the vein‐forming fluid was directly derived from the host UHP eclogite. The vein is much richer in phengite and epidote than the host eclogite, suggesting that the fluid is associated with remarkable concentration of such water‐soluble elements as LILE and LREE migration. Garnet and rutile in the vein exhibit much higher contents of HREE (2.2–5.7 times) and Nb–Ta (1.8–2.0 times) than those in the eclogite, indicating that these normally water‐insoluble elements became mobile and then were sunken in the vein minerals. Thus, the vein‐forming agent would be primarily composed of the UHP aqueous fluid with minor amounts of the hydrous melt, which may even become a supercritical fluid to have a capacity to transport not only LILE and LREE but also HREE and HFSE at subduction‐zone metamorphic conditions. Taken together, significant amounts of trace elements were transported by the vein‐forming fluid due to the phengite breakdown inside the UHP eclogite during exhumation of the deeply subducted continental crust.  相似文献   

5.
In the North‐East Greenland Caledonides, P–T conditions and textures are consistent with partial melting of ultrahigh‐pressure (UHP) eclogite during exhumation. The eclogite contains a peak assemblage of garnet, omphacite, kyanite, coesite, rutile, and clinozoisite; in addition, phengite is inferred to have been present at peak conditions. An isochemical phase equilibrium diagram, along with garnet isopleths, constrains peak P–T conditions to be subsolidus at 3.4 GPa and 940°C. Zr‐in‐rutile thermometry on inclusions in garnet yields values of ~820°C at 3.4 GPa. In the eclogite, plagioclase may exhibit cuspate textures against surrounding omphacite and has low dihedral angles in plagioclase–clinopyroxene–garnet aggregates, features that are consistent with former melt–solid–solid boundaries and crystallized melt pockets. Graphic intergrowths of plagioclase and amphibole are present in the matrix. Small euhedral neoblasts of garnet against plagioclase are interpreted as formed from a peritectic reaction during partial melting. Polymineralic inclusions of albite+K‐feldspar and clinopyroxene+quartz±kyanite±plagioclase in large anhedral garnet display plagioclase cusps pointing into the host, which are interpreted as crystallized melt pockets. These textures, along with the mineral composition, suggest partial melting of the eclogite by reactions involving phengite and, to a large extent, an epidote‐group mineral. Calculated and experimentally determined phase relations from the literature reveal that partial melting occurred on the exhumation path, at pressures below the coesite to quartz transition. A calculated P–T phase diagram for a former melt‐bearing domain shows that the formation of the peritectic garnet rim occurred at 1.4 GPa and 900°C, with an assemblage of clinopyroxene, amphibole, and plagioclase equilibrated at 1.3 GPa and 720°C. Isochemical phase equilibrium modelling of a symplectite of clinopyroxene, plagioclase, and amphibole after omphacite, combined with the mineral composition, yields a P–T range at 1.0–1. 6 GPa, 680–1,000°C. The assemblage of amphibole and plagioclase is estimated to reach equilibrium at 717–732°C, calculated by amphibole–plagioclase thermometry for the former melt‐bearing domain and symplectite respectively. The results of this study demonstrate that partial melt formed in the UHP eclogite through breakdown of an epidote‐group mineral with minor involvement of phengite during exhumation from peak pressure; melt was subsequently crystallized on the cooling path.  相似文献   

6.
Thirty‐three samples, including 22 eclogites, collected from the Dabie ultrahigh‐pressure (UHP) metamorphic belt in eastern China, have been studied for seismic properties. Compressional (Vp) and shear wave (Vs) velocities in three mutually perpendicular directions under hydrostatic pressures up to 1.0 GPa were measured for each sample. At 1.0 GPa, Vp (7.5–8.4 km s?1), Vs (4.2–4.8 km s?1), and densities (3.2–3.6 g cm?3) in the UHP eclogites are higher than those of UHP orthopyroxenite (7.3–7.5 km s?1, 4.1–4.3 km s?1, 3.2–3.3 g cm?3, respectively) and HP eclogites (7.1–7.9 km s?1, 4.0–4.5 km s?1, 3.1–3.5 g cm?3, respectively). Kyanitites (with 99.5% kyanite) show extremely high velocities and density (9.37 km s?1, 5.437 km s?1, 3.581 g cm?3, respectively). The eclogites show variation of Vp‐ and Vs‐anisotropy up to 9.70% and 9.17%, respectively. Poisson’s ratio (σ) ranges from 0.218 to 0.278 (with a mean of 0.255) for eclogites, 0.281–0.298 for granulites and 0.248 to 0.255 for amphibolites. The σ values for serpentinite (0.341) and marble (0.321) are higher than for other lithologies. The elastic moduli K, G, E of kyanitite were obtained as 163, 102 and 253 GPa, respectively. The Vp and density of representative UHP metamorphic rocks (eclogite & kyanitite) were extrapolated to mantle depth (15 GPa) following a reasonable geotherm, and compared to the one dimension mantle velocity and density model. The comparison shows that Vp and density in eclogite and kyanitite are greater than those of the ambient mantle, with differences of up to ΔVp > 0.3 km s?1 and Δρ > 0.3–0.4 g cm?3, respectively. This result favours the density‐induced delamination model and also provides evidence in support of distinguishing subducted high velocity materials in the upper mantle by means of seismic tomography. Such ultra‐deep subduction and delamination processes have been recognized by seismic tomography and geochemical tracing in the postcollisional magmatism in the Dabie region.  相似文献   

7.
Medium‐temperature ultrahigh pressure (MT‐UHP) eclogites from the south Dabie orogen, as represented by samples from the Jinheqiao, Shuanghe and Bixiling areas, consist of garnet, omphacite, phengite, epidote, hornblendic amphibole, quartz/coesite and rutile with or without kyanite and talc. Garnet is mostly anhedral and unzoned, but a few porphyroblasts are weakly zoned with core–mantle increasing grossular (Xgr) and decreasing pyrope (Xpy) contents. Garnet compositions are closely correlated with the bulk compositions. For instance, the Xpy and Xgr contents are positively correlated with the bulk MgO and CaO contents. Phengite is occasionally zoned with core–rim deceasing Si content, and phengite grains as inclusions in garnet show higher Si than in the matrix, suggesting differently resetting during post‐peak stages. The maximum Si contents are mostly 3.60–3.63 p.f.u. for the three areas. Pseudosections calculated using THERMOCALC suggest that the MT‐UHP eclogites should have a peak assemblage of garnet + omphacite + lawsonite + phengite + coesite in most rocks of higher MgO content. In this assemblage, the Xpy in garnet mostly depends on bulk compositions, whereas the Xgr in garnet and the Si contents in phengite regularly increase, respectively, as temperature and as pressure rise, and thus, can provide robust thermobarometric constraints. Using the Xgr and Si isopleths in pseudosections, the peak P–T conditions were estimated to be 40 kbar/730 °C for the Jinheqiao, 41 kbar/726 °C for the Shuanghe, and 37–52 kbar and 700–830 °C for the Bixiling eclogites. Some eclogites with higher FeO are predicted to have a peak assemblage of garnet + omphacite + coesite ± phengite without lawsonite, where the garnet and phengite compositions highly depend on bulk compositions and generally cannot give available thermobarometric constraints. Decompression of the eclogites with lawsonite in the peak stage is inferred to be accompanied with cooling and involves two stages: an early‐stage decompression is dominated by lawsonite dehydration, resulting in increase in the mode of anhydrous minerals, or further eclogitization, and formation of epidote porphyroblasts and kyanite‐bearing quartz veins in eclogite. As lawsonite dehydration can facilitate evolution of assemblages under fluid‐present conditions, it is difficult to recover real peak P–T conditions for UHP eclogites with lawsonite. This may be a reason why the P–T conditions estimated for eclogites using thermobarometers are mostly lower than those estimated for the coherent ultramafic rocks, and lower than those suggested from the inclusion assemblages in zircon from marble. A late‐stage decompression is dominated by formation of hornblendic amphibole and plagioclase with fluid infiltration. The lawsonite‐absent MT‐UHP eclogites have only experienced a decompression metamorphism corresponding to the later stage and generally lack the epidote overprinting.  相似文献   

8.
The Sanbagawa belt is one of the famous subduction‐related high‐pressure (HP) metamorphic belts in the world. However, spatial distributions of eclogite units in the belt have not yet satisfactorily established, except within the Besshi region, central Shikoku, southwest Japan because most eclogitic rocks were affected by lower pressure overprinting during exhumation. In order to better determine the areal distribution of the eclogite units and their metamorphic features, inclusion petrography of garnet porphyroblasts using a combination of electron probe microanalyser and Raman spectroscopy was applied to pelitic and mafic schists from the Asemi‐gawa region, central Shikoku. All pelitic schist samples are highly retrogressed, and include no index HP minerals such as jadeite, omphacite, paragonite, or glaucophane in the matrix. Garnet porphyroblasts in pelitic schists occur as subhedral or anhedral crystals, and show compositional zoning with irregular‐shaped inner segments and overgrown outer segments, the boundary of which is marked by discontinuous changes in spessartine. This feature suggests that a resorption process of the inner segment occurred prior to the formation of the outer segment, indicating discontinuous crystallization between the two segments. The inner segment of some composite‐zoned garnet grains displays Mn oscillations, implying infiltration of metamorphic fluid during the initial exhumation stage. Evidence for an early eclogite facies event was determined from mineral inclusions (e.g., jadeite, paragonite, glaucophane) in the garnet inner segments. Mafic schists include no index HP minerals in the matrix as with pelitic schists. Garnet grains in mafic schists show simple normal zoning, recording no discontinuous growth during crystal formation. There are no index HP mineral inclusions in the garnet, and thus no evidence suggesting eclogite facies conditions. Quartz inclusions in garnet of the pelitic and mafic schists show residual pressure values (?ω1) of >8.5 cm?1 and <8.5 cm?1 respectively. The combination of Raman geobarometry and conventional thermodynamic calculations gives peak PT conditions of 1.6–2.1 GPa at 460–520°C for the pelitic schists. The ?ω1 values of quartz inclusions in mafic schists are converted to a metamorphic pressure of 1.2–1.4 GPa at 466–549°C based on Raman geothermometry results. These results indicate that a pressure gap definitely exists between the mafic schists and the almost adjacent pelitic schists, which have experienced a different metamorphic history. Furthermore, the peak P–T values of the Asemi‐gawa eclogite unit are compatible with those of Sanbagawa eclogite unit in the Besshi region of central Shikoku, suggesting that these eclogite units share a similar P–T trajectory. The Asemi‐gawa eclogite unit exists in a limited area and is composed of mostly pelitic schists. We infer that these abundant pelitic schists played a key role in buoyancy‐driven exhumation by reducing bulk rock density and strength.  相似文献   

9.
深俯冲陆壳物质部分熔融产生的熔体,实验岩石学方面已有广泛报道,而天然初始熔体的组分却难以厘定。对此,本文从苏鲁超高压地体荣成混合岩中识别出了深俯冲花岗质陆壳部分熔融产生的天然初始熔体组成。野外露头显示,混合岩中主要矿物组成为钾长石+斜长石+石英的浅色熔体呈不连续的条带状与残余体互层产出,指示了原位或近源区的部分熔融特征。混合岩浅色体锆石CL图像呈明显的核-边结构,继承核部为扬子板块来源的岩浆锆石,形成时代为721±24Ma;新生边部CL图像具震荡环带结构,微量元素上REE呈明显左倾,具有Eu的负异常及Ce的正异常,低的Hf/Y和Th/U比值,具深熔锆石特征,指示形成于花岗质陆壳物质的部分熔融。边部U-Pb谐和年龄为225.9±2Ma,略晚于苏鲁超高压地体超高压峰期变质年龄,表明初始熔融发生在超高压地体折返早期。浅色熔体的全岩地球化学特征表明,主量元素上具有高SiO_2、K_2O及Na_2O含量,低的Fe_2O_3~T、MgO及CaO含量,A/CNK=1.02~1.04,呈弱过铝质亚碱性花岗岩的特征,这与实验岩石学中富硅陆壳物质部分熔融产生的熔体组分极为相近;微量元素上富集大离子亲石元素(如Rb、Ba、Pb等),亏损Nb、Ta、Ti等高场强元素,REE呈较为平坦的配分模式,具弱的Eu负异常并亏损Sr。本文通过上述对天然样品研究,厘定了深俯冲花岗质陆壳部分熔融及其初始熔体的组成,为理解大陆俯冲带壳幔相互作用提供了关键依据。  相似文献   

10.
Ophiolites exposed across the western Tauride Belt in SW Turkey represent tectonically emplaced fragments of oceanic lithosphere incorporated into continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The mantle sections of the ophiolites contain peridotites with diverse suites of geochemical signatures indicative of residual origin by melt depletion in both mid‐ocean ridge (MOR) and supra‐subduction zone (SSZ) settings. This study uses a laser‐ablation inductively‐coupled plasma‐mass spectrometry (LA‐ICP‐MS) for in situ measurements of trace elements in primary mantle phases in order to identify the upper mantle petrogenetic processes effective during variable stage of melt extraction in these discrete tectonic settings and to discriminate between the effects of reaction with chemically distinct mantle melts migrating through the solid residues. Trace element signatures in pyroxenes suggest small‐length scales of compositional variations which may be interpreted to be a result of post‐melting petrogenetic processes. Relative distribution of rare earth elements and Li between coexisting orthopyroxene‐clinopyroxene pairs in the peridotites suggests compositional disequilibrium in sub‐solidus conditions, which possibly reflects differential effects of diffusive exchange during melting and melt transport or interaction with subduction melts/fluids. On the basis of Ga abundances and Ga–Ti–Fe+3# [Fe+3/(Fe+3 + Cr + Al)] relationships of chrome‐spinels it is documented that the peridotites have experienced the combined effects of partial melting and variable extent of melt‐solid interaction. The MOR peridotites have spinels with geochemical signatures indicative of melt‐depleted residual origin with subsequent incompatible element enrichment through melt impregnation, while the Ga–Ti–Fe+3# relationships of chrome‐spinels in SSZ peridotites indicate that these highly depleted peridotites are not simple melt residues, but have been subject to significant compositional modification by interaction with subduction related melts/fluids. The observed compositional variations, which are related to long‐term tectonic reorganisation of oceanic lithosphere, provide evidence for a time integrated evolution from a mid‐ocean ridge to a supra‐subduction zone setting and may be a possible analogue to explain the coexistence of geochemically diverse MOR–SSZ suites in other Tethyan ophiolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Niobium and Ta concentrations in ultrahigh‐pressure (UHP) eclogites and rutile from these eclogites and associated high pressure (HP) veins were used to study the behaviour of Nb–Ta during dehydration and fluid‐rock interaction. Samples were collected through a ~2 km profile at the Bixiling complex in the Dabie orogenic belt, Central‐Eastern China. All but one eclogite away from veins (EAVs) display nearly constant Nb/Ta ratios ranging from 16.1 to 19.2, with an average of 16.9 ± 0.8 (2 SE), similar to that of their gabbroic protolith from the Yangtze Block. Nb/Ta ratios of rutile from the EAVs range from 12.7 to 25.3 among different individual grains, with the average values close to those of the corresponding bulk rocks. These observations show that Nb and Ta were not significantly fractionated by prograde metamorphism up to eclogite facies when no significant fluid‐rock interaction occurs. In contrast, Nb/Ta ratios of rutile from eclogites close to veins (ECVs) are highly variable from 17.8 to 49.8, which are systematically higher (by up to 17) than those of rutile from the veins. These observations demonstrate that Nb and Ta were mobilized and fractionated during localized fluid flow and intensive fluid‐rock interaction. This is strongly supported by Nb/Ta zoning patterns in single rutile grains revealed by in situ LA‐ICP‐MS analysis. Ratios of Nb/Ta in the ECV‐hosted rutile decrease gradually from cores towards rims, whereas those in the EAV‐hosted rutile are nearly invariable. Furthermore, the vein rutile shows Nb/Ta zoning patterns that are complementary to those in rutile from their immediate hosts (ECVs), suggesting an internal origin for the vein‐forming fluids. The Nb/Ta ratios of such fluids evolved from low values at the early stage of subduction to higher values at later supercritical conditions with increased temperature and pressure. Quantitative modelling was conducted to constrain the compositional evolution of metamorphic fluids during dehydration and fluid‐rock interaction focusing on Nb–Ta distribution. The modelling results based on our proposed multistage fluid phase evolution path can essentially reproduce the natural observations reported in the present study.  相似文献   

12.
While recycling of subducted oceanic crust is widely proposed to be associated with oceanic island, island arc, and subduction-related adakite magmatism, it is less clear whether recycling of subducted continental crust takes place in continental collision belts. A combined study of zircon U–Pb dating, major and minor element geochemistry, and O isotopes in Early Cretaceous post-collisional granitoids from the Dabie orogen in China demonstrates that they may have been generated by partial melting of subducted continental crust. The post-collisional granitoids from the Dabie orogen comprise hornblende-bearing intermediate rocks and hornblende-free granitic rocks. These granitoids are characterized by fractionated REE patterns with low HREE contents and negative HFSE anomalies (Nb, Ta and Ti). Although zircon U–Pb dating gives consistent ages of 120 to 130 Ma for magma crystallization, occurrence of inherited cores is identified by CL imaging and SHRIMP U–Pb dating; some zircon grains yield ages of 739 to 749 Ma and 214 to 249 Ma, in agreement with Neoproterozoic protolith ages of UHP metaigneous rocks and a Triassic tectono-metamorphic event in the Dabie–Sulu orogenic belt, respectively. The granitoids have relatively homogeneous zircon δ18O values from 4.14‰ to 6.11‰ with an average of 5.10‰ ± 0.42‰ (n = 28) similar to normal mantle zircon. Systematically low zircon δ18O values for most of the coeval mafic–ultramafic rocks and intruded country rocks preclude an AFC process of mafic magma or mixing between mafic and felsic magma as potential mechanisms for the petrogenesis of the granitoids. Along with zircon U–Pb ages and element results, it is inferred that the granitic rocks were probably derived from partial melting of intermediate lower crust and the intermediate rocks were generated by amphibole-dehydration melting of mafic rocks in the thickened lower crust, coupled with fractional crystallization during magma emplacement. The post-collisional granitoids in the Dabie orogen are interpreted to originate from recycling of the subducted Yangtze continental crust that was thickened by the Triassic continent–continent collision. Partial melting of orogenic lithospheric keel is suggested to have generated the bimodal igneous rocks with the similar crustal heritage. Crustal thinning by post-collisional detachment postdated the onset of bimodal magmatism that was initiated by a thermal pulse related to mantle superwelling in Early Cretaceous.  相似文献   

13.
The degree of element mobility in subduction metamorphism has generated much debate; some workers advocate considerable mobility during metamorphism, whereas others postulate minimal mobility. We assess this issue by examination of major and trace element concentrations and Pb-, Nd-isotopic data for 39 mafic metavolcanic rocks from the Franciscan subduction complex, related units of coastal California, and the Feather River ultramafic belt of the northern Sierra Nevada, California; these samples span a wide range of metamorphic grade. We conclude that these rocks, despite their metamorphism up to eclogite facies, preserve protolith major and trace elemental compositions and isotopic ratios, with the exception of some mobile large ion lithophile elements such as Ba, Pb, and to a smaller extent La, U, and Sr. Thus subduction metamorphism of these metabasalts occurred in a largely closed system. Lack of light rare earth element enrichment in the rocks demonstrates lack of chemical exchange with subducted metasediments. Relatively low SiO2 content (<48 wt.%) of many of the metamorphic rocks and the lack of correspondence between silica depletion and metamorphic grade suggests that the silica depletion resulted from seafloor hydrothermal alteration before subduction. In spite of demonstrated mobility of Pb, and possible mobility of Nd, isotopic ratios of Pb and Nd were not modified during subduction metamorphism. In contrast to our results from metabasaltic rocks, our analysis of actinolite-rich rinds from high-grade Franciscan mélange blocks suggests some chemical exchange between metachert and the overlying mantle. The increasing enrichment in Ba and Pb with increasing metamorphic grade suggests that Ba- and Pb-rich fluids interacted more intensely with metabasalt at the higher grades of metamorphism. Comparison of these results with studies of the active Mariana forearc suggests that fluids interacting with the mantle wedge up-dip of the region of magma genesis are derived from subducting sediments overlying the down-going plate.  相似文献   

14.
This paper first reports a high precision U–Pb age of 218±1.2 Ma for rutile in coesite-bearing eclogite from Jinheqiao in the Dabie Mounteins, east–central China. This work shows that the U–Pb mineral (rutile+omphacite) isochron age of 218±2.5 Ma and conventional rutile U–Pb concordia age of 218±1.2 Ma obtained by common Pb correction based on the Pb isotopic composition of omphacite in the same eclogite sample are consistent, proving that the omphacite with low U/Pb ratio (μ=2.8) can be used for common Pb correction in U–Pb dating of rutile. Oxygen isotope analysis of rutile aliquots gave the consistent δ18O values of −6.1±0.1%, demonstrating oxygen isotope homogenization in the rutile of different grains as inclusion in garnet and grain in matrix. Oxygen isotope thermometry yields temperatures of 695±35 and 460±15 °C for quartz–garnet and quartz–rutile pairs, respectively. These oxygen isotopic observations suggest that the diffusion of oxygen in rutile as inclusion in garnet is not controlled by garnet. According to field-based thermochronological studies of rutile, an estimate of the Tc of about 460 °C for U–Pb system in rutile under rapid cooling conditions (20 °C/Ma) was advised. Based on this U–Pb age as well as the reported chronological data with their corresponding metamorphic and/or closure temperature, an improved Tt path has been constructed. The Tt path confirms that the UHPM rocks in South Dabie experienced a rapid cooling following the peak metamorphism before 220 Ma and a long isothermal stage from 213 to 180 Ma around 425 °C.  相似文献   

15.
Authigenic pyrite grains from a section of the Lower Toarcian Posidonia Shale were analysed for their trace‐element contents and sulphur‐isotope compositions. The resulting data are used to evaluate the relationship between depositional conditions and pyrite trace‐element composition. By using factor analysis, trace‐elements in pyrite may be assigned to four groups: (i) heavy metals (including Cu, Ni, Co, Pb, Bi and Tl); (ii) oxyanionic elements (As, Mo and Sb); (iii) elements partitioned in sub‐microscopic sphalerite inclusions (Zn and Cd); and (iv) elements related to organic or silicate impurities (Ga and V). Results indicate that trace‐element contents in pyrite depend on the site and mechanism of pyrite formation, with characteristic features being observed for diagenetic and syngenetic pyrites. Diagenetic pyrite formed within anoxic sediments generally has a high heavy metals content, and the degree of pyritization of these elements increases with increasing oxygen deficiency, similar to the degree of pyritization of reactive Fe. The highest gradient in the increase of the degree of trace element pyritization with bottom‐water oxygenation was found for the elements Ni < Cu < Mo = As < Tl. In contrast, syngenetic pyrite formed within a euxinic water column typically is enriched in As, Mo and Sb, but is low in heavy metals, and the geochemical variation reflects changes in sea water composition.  相似文献   

16.
The Zhujiachong eclogite in the south‐eastern Dabieshan ultra‐high‐P terrane has been overprinted during retrograde metamorphism, with the development of garnet‐amphibolite mineral assemblages in most rocks in the outcrop. This study is focused on providing age constraints for the retrograde amphibolite facies and greenschist facies mineralogy by 40Ar/39Ar dating. By applying a novel approach of combining three different techniques for extracting argon: laser stepwise heating of single grains and small separates, a spot fusion technique by UV‐laser ablation microprobe on polished sections and an in vacuo crushing technique for liberating radiogenic argon from fluid inclusions, it is demonstrated that an internally consistent thermal history can be derived. The 40Ar/39Ar ages indicate that phengite formed before 265 Ma, probably during the ultra‐high‐P event. Ages associated with amphibolite facies retrograde metamorphism range from 242 to 217 Ma by the analyses of amphibole. Ages of c. 230 Ma were found for the symplectite matrix that formed during retrogression from eclogite pyroxene. Late stage hydrothermal activity leading to the formation of coarse‐grained paragonite and fluid inclusions in vein amphibole was dated at c. 200 Ma. These age results agree well with the mineral crystallization sequence observed from thin‐sections of the retrograded eclogite: phengite → paragonite and amphibole in matrix → amphibole in the corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号