首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Edipsos area, situated in northern Euboea, has been well known since ancient times for the existence of thermal springs. In order to assess the hydrogeochemical conditions, thermal and cold water samples were collected and analyzed by ICP method for major and trace elements. The results revealed the direct impact of seawater, a process which is strongly related to the major tectonic structures of the area. Seawater impact was confirmed by the Cl/Br and Na/Cl ionic ratios, as well as from statistical processing and graphical interpretation of the analytical results, which classified the sampled waters into three groups (two for cold waters and one for the thermal ones). Trace element ranges for thermal waters are: As (44–84 ppb), Pb (23–154 ppb), Ag (1–2 ppb), Mn (31–680 ppb), Cu (61–97 ppb), Cs (66–244 ppb), Se (0–76 ppb), Li (732–3269 ppb), Fe (0–1126 ppb), Sr (14000–34100 ppb), B (4300–9600 ppb). Compared with the chemical composition of other thermal springs from the Hellenic Volcanic Arc, Edipsos thermal waters are enriched in Ca2+, Na+, Cl?, SO4 2?, Li, B and K+, reflecting the influence from seawater. Cold waters are free of heavy metals compared with other natural waters and are characterized by good quality based on the major element chemistry. Finally, several geothermometers were applied in order to assess the reservoir temperatures, but none of them appear to be applicable, mainly due to the impact of seawater on the initial hydrogeochemistry of the geothermal fluids.  相似文献   

2.
A hydrogeochemical study of the impact of land use on the composition of natural waters in the Vouzela region in northern Portugal was carried out during the summer of 1983. Water samples were collected from spring and major streams in the area and analyzed for major constituents and some trace elements. Analysis of variance and subsequent pairwise contrast tests demonstrated that waters from agricultural areas are significantly enriched in constiluents such as Na, K, Ca, Mg, Sr, Cl, SO4, and NO3. High concentrations of these ions in agricultural areas are the result of both the application of fertilizers and enhanced evaporation by the intensive irrigation of agricultural lands. Constitutents such as H4SiO4, HCO3, F, and probably Li, which are typically related to mineral weathering, were not affected by land use. In waters from forested areas the concentration of most constituents was about 20% higher than in waters from uncultivated areas with mainly a grass cover. This reflects the difference in the evapotranspiration of these two vegetation types. The chemistry of the Rio Zela clearly reflects differences in land use in the Rio Zela valley.  相似文献   

3.
This paper reports the results of our studies, the chemical analysis of thermal spring’s waters and their geological settings, the use of different statistical methods to evaluate the origin of the dissolved constituents of spring waters and the estimation of the reservoir temperature of the associated geothermal fields of the Guelma region, Algeria. A major component in 13 spring water samples was analyzed using various techniques. The waters of the thermal springs at Guelma basin vary in temperature between 20 and 94oC. Q-mode hierarchical cluster analysis suggests three groups. The water springs were classified as low, moderate and high salinity. Mineral saturation indices (SI) calculated from major ions indicate the spring waters are supersaturated with the most of the carbonate minerals, and all of the spring water samples are under-saturated with evaporite minerals. The thermal spring waters have a meteoric origin, and all samples are immature with strong mixing between warm and shallow waters, where the temperatures of reservoirs to which the thermal waters are related ranged between 64° and 124°C. The deep circulation of meteoric waters in the study area is supplied by the high geothermal gradient around 4.5°C per 100 m and reaches a high temperature before rising to the surface. The estimated circulation depths ranged from 1425 and 3542 m.  相似文献   

4.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

5.
A study was conducted in seven geothermal springs located in Bakreswar, District Birbhum, West Bengal, India, in order to assess numerous geochemical processes which were responsible for chemical composition of thermal and mineralized water. The study area lies over the Sone, Narmada, and Tapti lineament of Precambrian Chotanagpur Gneissic Complex. Water chemistry has been carried out based on reaction stoichiometry and geo-statistical tools to identify geochemical process. Piper and Gibbs diagram suggest that the spring water belongs to Ca2+-Mg2+-HCO3??+?CO32? water type and are controlled by rock dominance. Dissolution and precipitation of calcite, dolomite, gypsum, and fluorite minerals were identified as principle source of major ions in seven geothermal spring water. Principle component analyses revealed that major ions of spring water are derived from geogenic processes such as weathering, dissolution, and precipitation of various minerals. Overall results suggest that major ions of the spring’s water are derived from natural origin because no evidence of anthropogenic sources was observed during the study period. This study has also revealed that water quality of spring’s water is not suitable for drinking purposes and quite suitable for irrigation because of high abundance of Na+, K+, Cl?, and HCO3? ions.  相似文献   

6.
Soils, rocks, altered rocks, hot and cold waters, and hot spring precipitates were sampled within and on the outskirts of geothermal fields in China. The contents of thirty trace elements in soils and rocks show that Hg, As, Sb, Bi, Li, Rb, Cs, Au, Ag, B, W, Sn, Pb, Zn, Mn, Ni and Co can serve as direct and indirect indicators for geothermal field exploration. Large amounts of data indicate that Hg, As and Sb are the best indicators of hot water sources. Altered rocks contain higher Hg, As, Sb, Bi and Be than unaltered rocks. Based on their abundances in hot waters, it is suggested that the following elements may be used as hydrochemical indicators of high-temperature hot-water geothermal systems: K+, Na+, Ca2+, Mg2+, SO2−4, HCO3, F, Cl, SiO2, HBO2, CO2, pH, total dissolved solids and hydrochemical types, as well as Hg, As, Sb, Be, Li, Rb and Cs. Modern precipitates associated with hot springs have high contents of Ba, Be, Fe, Ti, Hg, As, Sb and Bi. Using these geochemical data, the authors have had much success in locating hot water drill sites within geothermal fields. Case histories are described for five geothermal areas.  相似文献   

7.
河北汤泉地热流体水文地球化学特征及其成因   总被引:7,自引:5,他引:2       下载免费PDF全文
提要:汤泉位于河北省遵化市西北部,为山前丘陵地貌,地热资源丰富。本文通过对该地区地热流体研究发现:Na+、Ca2+、K+、Mg2+与SO2-4、HCO-3、Cl-、NO-3是该地区地下热水的主要成分,水化学类型主要为SO2-4-Na+型,属于未污染的天然弱碱性水;流体中F-含量平均为9.36 mg/l,远高于国家地下水质量标准ⅴ级;可溶性SiO2的含量可作为地热温标;地热流体总矿化度平均为782.33 mg/l,属于淡水;为中等腐蚀型水,不结碳酸钙垢,无CaSO4?2H2O垢和SiO2垢生成的可能;地热流体属于含岩盐地层溶滤的陆相沉积水;根据氢氧稳定同位素可知,河北汤泉地热流体主要来源于大气降水。  相似文献   

8.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

9.
Subsurface reservoir temperatures of two important Mexican geothermal systems (Los Azufres and Las Tres Vírgenes) were estimated by applying all available solute geothermometers for 88 and 56 chemical data measurements of the spring waters and fluids of the deep geothermal wells, respectively. Most of the chemical data for spring water of these two geothermal fields are for HCO3 water, followed by SO4 and Cl types. For the Los Azufres geothermal field (LAGF), the reservoir temperatures estimated by Na-K geothermometers for springs of HCO3 and SO4 waters, and by Na-Li and Li-Mg geothermometers for Cl water, are close to the average bottom-hole temperature (BHT) of the geothermal wells. However, all reservoir temperatures for spring waters from the Las Tres Vírgenes geothermal field (LTVGF) estimated by all solute geothermometers indicated significantly large differences (low temperatures) compared to the BHT. Evaluation of inferred reservoir temperatures for spring waters of the LAGF and LTVGF suggests that not all springs nor all solute geothermometers provide reliable estimation of the reservoir temperatures. Even though chemical equilibrium probably was not achieved in the water–rock system, Na-K geothermometers for HCO3 water (peripheral water mainly of meteoric origin with little geothermal component) and SO4 water (geothermal steam heated) and Na-Li and Li-Mg geothermometers for Cl-rich spring water (fully mature geothermal water) of the LAGF indicated reservoir temperatures close to the BHT. However, in comparison with the geothermometry of spring water of the LAGF and LTVGF, fluid measurements from geothermal wells of these two fields indicated reservoir temperatures in close agreement with their respective BHTs. For the best use of the solute geothermometry for spring water, it is advisable to: (1) chemically classify the springs based on water types; (2) identify and eliminate the discordant outlier observations by considering each water type as a separate sampled population; (3) apply all available solute geothermometers employing a suitable computer program such as SolGeo instead of using some specific, arbitrarily chosen geothermometers; and (4) evaluate the temperatures obtained for each solute geothermometer by considering the subsurface lithology, hydrological conditions, and BHTs or static formation temperatures whenever available.  相似文献   

10.
A study of the hydrochemical evaluation of waters in the I??kl? Lake and surrounding area was carried out with the objective of identifying the geochemical processes and their relation with water quality in the region. The multivariate statistical techniques were used in the hydrochemical evaluation of waters. Statistical analysis of water quality parameters was made to seeing the interrelationship between different variables in order to explain the water quality and pollution status of study area. For this purpose, water samples were taken from lake, river, stream, and springs which are represented by investigated area and water qualities were evaluated. Generally, Ca2+, Mg2+, and Cl?, HCO3 ? ions are dominant within surface water and water sources. Arsenic concentration increase is determined in I??kl? spring and Kufi stream water samples. Also, aluminum concentration is high level in the Kufi stream water samples. This increase was related to igneous rocks as geogenic origin. Also, geogenic contamination was identified in R-mode factor and cluster analyses. There is high correlation between electrical conductivity and major ions of waters.  相似文献   

11.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

12.
Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.  相似文献   

13.
A conceptual model with water samples from ten geothermal fields (?smil, Ilg?n (Çavu?cugöl), Tuzlukçu-Ak?ehir, Seydi?ehir and Kavakköy, Hüyük, Ere?li-Akhüyük, Kad?nhan?, Cihanbeyli, Karap?nar and Bey?ehir) in the province of Konya defined the geothermal system. Carbonates, quartzite and marbles of Paleozoic metamorphics are the reservoir rocks and the heating sources are igneous rock intrusions and geothermal gradient. The variable thermal water (CaMgHCO3, CaSO4, NaSO4, CaHCO3, CaNaHCO3, NaCl and CaNaClHCO3) had EC and temperature between 177.8 and 56,100 μS/cm and between 18.3 and 44 °C, respectively. Ca2+ in geothermal fluids are associated with marble and carbonate rocks and the high chloride shows direct connection with deep geothermal system, and prolonged contact with evaporite rocks. Sulphate originates from dissolution of and oxidation of sulphate and sulphur-bearing minerals. The high As, B, F and Mn concentration in some thermal water samples were determined as 85 μg/l, 148.56 mg/l, 3.01 mg/l and 208.13 mg/l, respectively. Reservoir temperatures computed by Na/K geothermometers were between 85.37–158.89 °C for Ak?ehir thermal waters and 58.78–90.45 °C for Ere?li thermal waters. The maximum reservoir temperature of other geothermal waters was 75 °C by the silica geothermometers.  相似文献   

14.
The compositions of rain, snow, melt, spring and geothermal waters from the rift zone of N.E. Iceland can be explained by seaspray addition, chemical fractionation at the seawater-air interface, burning of fossil fuel, farming activities, purification by partial melting of snow and ice, dissolution of basalts and buffering by alteration minerals. The dissolution of the rocks appears to be incongruent. During solute acquisition, spring compositions move through the stability fields of kaolinite and smectite to the laumontite and illite fields. All but four of the springs are undersaturated with respect to calcite. Silica concentrations are compatible with the solubility of basaltic glass. The reactions reflected in the spring waters appear to have taken place sealed off from atmospheric CO2 after initial saturation.The geothermal waters which are recharged by the spring waters are depleted in Mg and Ca but enriched in carbon and sulfur with respect to dissolution of primary rocks. Expressions are derived relating dissolution rates of rocks, age of groundwaters, physical properties of groundwaters and mass transfer. The characteristic rock particle radii in the cold water aquifers range from 0.2 to 2 cm and the characteristic crack openings are of the order 0.04 to 0.4 cm. Using laboratory studies on the Icelandic lavas as a guide, the residence times of the cold waters in the aquifers can be estimated at 60 days to 4 years. The average active surface area of the aquifers enclosing 1000 g of spring water is of the order of 0.6 to 6 m2 and these 1000 g of water have reacted with 0.1 to 1 g of basaltic rocks. The same mass of thermal water has interacted with 100 to 300 g of unaltered rocks.  相似文献   

15.
《Applied Geochemistry》2003,18(6):863-882
New geochemical data on dissolved major and minor constituents in 276 groundwater samples from Etna aquifers reveal the main processes responsible for their geochemical evolution and mineralisation. This topic is of particular interest in the light of the progressive depletion of water resources and groundwater quality in the area. Multivariate statistical analysis reveal 3 sources of solutes: (a) the leaching of the host basalt, driven by the dissolution of magma-derived CO2; (b) mixing processes with saline brines rising from the sedimentary basement below Etna; (c) contamination from agricultural and urban wastewaters. The last process, highlighted by increased concentrations of SO4, NO3, Ca, F and PO4, is more pronounced on the lower slopes of the volcanic edifice, associated with areas of high population and intensive agriculture. However, this study demonstrates that natural processes (a) and (b) are also very effective in producing highly mineralised waters, which in turn results in many constituents (B, V, Mg) exceeding maximum admissible concentrations for drinking water.  相似文献   

16.
The origin of chloride-rich karstic spring waters representative of the Languedoc-Roussillon region has been investigated with a hydrochemical approach. To this end, the major and trace elements most often used in the study of saline environments have been considered (Cl, SO4, Br, B, Li). This study allowed distinguishing the different end-members of the various chloride-rich karstic spring waters (evaporitic, marine, geothermal). Associated with the Cl, Br and B contents, the Li/SO4 ratio appeared as a relevant tracer for the determination of the origin of lithium and by extension of the considered waters. To cite this article: O. Hébrard et al., C. R. Geoscience 338 (2006).  相似文献   

17.
This study focuses on the water and gas chemistry of the northeastern Algerian thermal waters. The helium gas was used to detect the origin of the geothermal fluid. In the Guelma Basin, the heat flow map shows an anomaly of 120 ± 20 mW/m2 linked to the highly conductive Triassic extrusion. The chemical database reveals the existence of three water types, Ca-SO4/Na-Cl, which are related to evaporites and rich in halite and gypsum minerals. The third type is Ca (Na)-HCO3, which mostly characterizes the carbonated Tellian sector. The origin of thermal waters using a gas-mixing model indicates a meteoric origin, except for the El Biban hot spring (W10), which shows a He/Ar ratio of 0.213, thus suggesting the presence of batholith. The helium distribution map indicates a lower 3He/4He ratio between 0 Ra and 0.04 Ra in the W10 and W15 samples, which is compatible with the crustal ratio. Reservoir temperatures estimated by silica geothermometers give temperatures less than 133 °C. The geothermal conceptual model suggests that a geothermal system was developed by the deep penetration of infiltrated cold waters to a depth of 2.5 km and then heated by a conductive heat source (batholith for El Biban case). The thermal waters rise up to the surface through the deep-seated fractures. During their ascension, they are mixed with shallow cold groundwater, which increase the Mg content and cause the immature classification of the water samples.  相似文献   

18.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

19.
The Diyadin Geothermal area, located in the eastern part of Anatolia (Turkey) where there has been recent volcanic activity, is favorable for the formation of geothermal systems. Indeed, the Diyadin geothermal system is located in an active geodynamic zone, where strike-slip faults and tensional cracks have developed due to N–S regional compression. The area is characterized by closely spaced thermal and mineralized springs, with temperatures in the range 30–64 °C, and flowrates 0.5–10 L/s. Thermal spring waters are mainly of Ca(Na)-HCO3 and Ca(Mg)-SO4 types, with high salinity, while cold groundwater is mostly of Ca(Na, Mg)-HCO3 type, with lower salinity. High contents of some minor elements in thermal waters, such as F, B, Li, Rb, Sr and Cs probably derive from enhanced water–rock interaction.Thermal water samples collected from Diyadin are far from chemical equilibrium as the waters flow upward from reservoirs towards spring vents and possibly mix with cooler waters. The temperatures of the deep geothermal reservoirs are estimated to be between 92 and 156 °C in Diyadin field, based on quartz geothermometry, while slightly lower estimates are obtained using chalcedony geothermometers. The isotopic composition of thermal water (δ18O, δ2H, δ3H) indicates their deep-circulating meteoric origin. The waters are likely to have originated from the percolation of rainwater along fractures and faults to the deep hot reservoir. Subsequent heating by conduction due to the presence of an intrusive cupola associated with the Tendurek volcano, is followed by the ascent of deep waters to the surface along faults and fractures that act as hydrothermal conduits.Modeling of the geothermal fluids indicates that the fluid is oversaturated with calcite, aragonite and dolomite, which matches travertine precipitation in the discharge area. Likewise, the fluid is oversaturated with respect to quartz, and chalcedony indicating the possibility of siliceous precipitation near the discharge areas. A conceptual hydro-geochemical model of the Diyadin thermal waters based on the isotope and chemical analytical results, has been constructed.  相似文献   

20.
Thermal waters at the Godavari valley geothermal field are located in the Khammam district of the Telangana state, India. The study area consists of several thermal water manifestations having temperature in the range 36–76 °C scattered over an area of ~35 km2. The thermal waters are Na–HCO3 type with moderate silica and TDS concentrations. In the present study, detailed geochemical (major and trace elements) and isotope hydrological investigations are carried out to understand the hydrogeochemical evolution of these thermal waters. Correlation analysis and principal component analysis (PCA) are performed to classify the thermal waters and to identify the different geochemical processes controlling the thermal water geochemistry. From correlation matrix, it is seen that TDS and EC of the thermal springs are mainly controlled by HCO3 and Na ions. In PCA, thermal waters are grouped into two distinct clusters. One cluster represents thermal waters from deeper aquifer and other one from shallow aquifer. Lithium and boron concentrations are found to be similar followed by rubidium and caesium concentrations. Different ternary plots reveal rock–water interaction to be the dominant mechanism for controlling trace element concentrations. Stable isotopes (δ18O, δ2H) data indicate the meteoric origin of the thermal waters with no appreciable oxygen-18 shift. The low tritium values of the samples originating from deeper aquifer reveal the long residence time (>50 years) of the recharging waters. XRD results of the drill core samples show that quartz constitutes the major mineral phase, whereas kaolinite, dolomite, microcline, calcite, mica, etc. are present as minor constituents. Quartz geothermometer suggests a reservoir temperature of 100 ± 20 °C which is in good agreement with the values obtained from K–Mg and Mg-corrected K–Mg–Ca geothermometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号