首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hale crater formed in the Early to Middle Amazonian and is one of the best preserved large craters on Mars. We focus on the emplacement of previously mapped distal continuous ejecta and newly recognized discontinuous distal ejecta deposits reaching up to 450 km northeast of Hale. The distal continuous ejecta deposits are typically tens of meters thick, likely water-rich, and subsequent dewatering of some resulted in flow along gradients of 10 m km-1 for distances of tens of kilometers. The discontinuous distal ejecta are typically <10 m thick with volumes generally <0.5 km3 and embay Hale secondaries, which occur up to ~600 km from Hale. Both continuous and discontinuous distal ejecta deposits are typically smooth at scales of tens to hundreds of meters, relatively dark-toned, devoid of eolian bedforms, inferred to be mostly fine-grained, and were likely emplaced within hours to 1–2 days after impact. The occurrence of well-preserved discontinuous distal ejecta at Hale is unusual compared to other large Martian craters and could be due to impact into an ice-rich substrate that enabled their formation and (or) their survival after minimal postimpact degradation relative to older craters. The pristine nature of distal continuous and discontinuous distal deposits at Hale and the preservation of associated secondaries imply (1) low erosion rates after the Hale impact, comparable to those estimated elsewhere during the Amazonian; (2) the impact did not significantly influence long-term global or regional scale geomorphic activity or climate; and (3) the Hale impact occurred after late alluvial fan activity in Margaritifer Terra.  相似文献   

2.
J. Veverka 《Icarus》1975,25(4):595-601
Evidence is presented to show that the ragged dark streaks which appeared behind many Martian craters several months after the end of the 1971 global duststorm were produced by wind erosion of a thin surface veneer of duststorm fallout.  相似文献   

3.
Abstract— Impact cratering is an important geological process on Mars and the nature of Martian impact craters may provide important information as to the volatile content of the Martian crust. Terrestrial impact structures currently provide the only ground‐truth data as to the role of volatiles and an atmosphere on the impact‐cratering process. Recent advancements, based on studies of several well‐preserved terrestrial craters, have been made regarding the role and effect of volatiles on the impact‐cratering process. Combined field and laboratory studies reveal that impact melting is much more common in volatile‐rich targets than previously thought, so impact‐melt rocks, melt‐bearing breccias, and glasses should be common on Mars. Consideration of the terrestrial impact‐cratering record suggests that it is the presence or absence of subsurface volatiles and not the presence of an atmosphere that largely controls ejecta emplacement on Mars. Furthermore, recent studies at the Haughton and Ries impact structures reveal that there are two discrete episodes of ejecta deposition during the formation of complex impact craters that provide a mechanism for generating multiple layers of ejecta. It is apparent that the relative abundance of volatiles in the near‐surface region outside a transient cavity and in the target rocks within the transient cavity play a key role in controlling the amount of fluidization of Martian ejecta deposits. This study shows the value of using terrestrial analogues, in addition to observational data from robotic orbiters and landers, laboratory experiments, and numerical modeling to explore the Martian impact‐cratering record.  相似文献   

4.
Wind erosion and deposition are powerful agents of surface change on Mars. Erosion is sensitive to the atmospheric density, so feedback between orbit variations and atmospheric density can enhance the sensitivity of erosion rates to orbital parameters. We use statistics derived from a 1 Gyr integration of the spin axis of Mars, coupled with runs of the NASA Ames 3-D general circulation model (GCM) at a variety of orbital conditions and pressures, to explore this feedback. We find that wind erosion in the GCM is associated with two factors: baroclinic zone winds, and strong cross-equator solstice flows. Both of these factors are influenced by topography, producing an asymmetry in the erosion pattern between the north and the south. The erosion model, averaged over 1 Gyr, produces potential erosion rates of in the north and in the south, which increase by an order of magnitude in an early 28 mbar atmosphere. The stability of these potential erosion patterns over geological time indicates that the lowland regions of Mars are continuously eroded, and that wind is capable of revealing ancient sedimentary deposits, or eroding substantial deposits that may have otherwise been preserved.  相似文献   

5.
Morphological features on the western floor of Miyamoto crater in southwestern Meridiani Planum, Mars, are suggestive of past fluvial activity. Imagery from the High Resolution Imaging Science Experiment (HiRISE) gives a detailed view of raised curvilinear features that appear to represent inverted paleochannel deposits. The inverted terrain appears to be capped with a resistant, dark-toned deposit that is partially covered by unconsolidated surficial materials. Subsequent to deposition of the capping layer, erosion of the surrounding material has left the capping materials perched on pedestals of uneroded basal unit material. Neither the capping material nor the surrounding terrains show any unambiguous morphological evidence of volcanism or glaciation. The capping deposit may include unconsolidated or cemented stream deposits analogous to terrestrial inverted channels in the Cedar Mountain Formation near Green River, Utah. In addition to this morphological evidence for fluvial activity, phyllosilicates have been identified in the basal material on the floor of Miyamoto crater by orbital spectroscopy, providing mineralogical evidence of past aqueous activity. Based on both the morphological and mineralogical evidence, Miyamoto crater represents an excellent site for in situ examination and sampling of a potentially habitable environment.  相似文献   

6.
Scott C. Mest  David A. Crown 《Icarus》2005,175(2):335-359
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing.  相似文献   

7.
Fractal property or self-similarity exists abundantly in many aspects in our universe. Fractals are rich in geology and have certain relations to various geological processes. This article presents analyses of fractal properties of 18 impact crater ejecta margins on the surface of Venus. The structured walk method was used to measure the length of perimeter of the ejecta margin and the resulting Richardson plots were investigated. EveryR-plot has a first linear part, a second part and a main scattering part. The variations seen in the second part include information on the formation and geology of the crater ejectas. The fractal dimension of the second part is related to the perimeter of the ejecta and thus to the impact energy. The ratio of the square of the perimeter to the area describes the lobateness of the ejecta and has a positive correlation to the perimeter in a way similar to that between the fractal dimension of the second part and the perimeter. Two linear subparts in the second part indicate different fractal properties due to various processes dominating on different scales. Scattering in the middle of the second part indicates the scale and type of the ejecta lobes. The smooth scattering over the entire second part is related to impact angle and energy. A threshold value beyond which the structured walk method cannot be used was observed at a ruler length of about 1/10 of the perimeter.  相似文献   

8.
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy.  相似文献   

9.
Simulations of the surface temperature and atmospheric humidity with a modern Mars climate model (MCD) and with Phoenix data are used to study the conditions for a liquefaction of brines as a function of latitude and season. The results show that, in the presence of appropriate salts, liquid cryobrines can in course of the diurnal cycle temporarily evolve at high latitudes on Mars’ current climate. The conditions for the liquefaction of “Mars-relevant” cryobrines and time and duration of their stability during the diurnal cycle are calculated for northern spring and for the Phoenix landing site.  相似文献   

10.
Abstract— A simple granular flow model is used to investigate some of the conditions under which ejecta may flow as a granular media. The purpose of this investigation is to provide some bounds as to when either volatiles or an atmosphere are required to explain the fluid‐like morphology of many Martian ejecta deposits. We consider the ejecta deposition process from when an ejecta curtain first strikes a target surface via ballistics and possibly flows thereafter. A new finding is that either hard‐smooth surfaces or slightly erodible surfaces allow ejecta to flow readily as a granular medium. Neither volatiles nor an atmosphere are required to initiate flow. A low friction coefficient between ejecta grains can also generate flow and would be analogous to adding volatiles to the ejecta. The presence of either a rough or a densely packed erodible surface does not permit easy ejecta flow. High friction coefficients between ejecta grain also prevent flow, while changes in the coefficient of restitution (a measure of how much energy is retained after collisions between particles) plays a minor role in the flow dynamics of ejecta. A hard smooth or a somewhat erodible surface could be generated by past fluvial activity on Mars, which can either indurate a surface, erode and smooth a surface, or generate sedimentary terrains that are fairly easy to erode. No ramparts or layered ejecta morphologies are generated by our model, but this may be because several simplifying assumptions are used in our model and should not be construed as proof that either volatiles or an atmosphere are required to form fluidized ejecta morphologies.  相似文献   

11.
Mid-latitude pedestal craters on Mars offer crucial insights into the timing and extent of widespread ice-rich deposits during the Amazonian period. Our previous comprehensive analysis of pedestal craters strongly supports a climate-related formation mechanism, whereby pedestals result from impacts into ice-rich material at mid latitudes during periods of higher obliquity. The ice from this target deposit later sublimates due to obliquity changes, but is preserved beneath the protective cover of the armored pedestal. As such, the heights of pedestals act as a proxy for the thicknesses of the paleodeposits. In this analysis, our measurement of 2300 pedestal heights shows that although pedestals can reach up to ∼260 m in height, ∼82% are shorter than 60 m and only ∼2% are taller than 100 m. Mean pedestal heights are 48.0 m in the northern mid latitudes and 40.4 m in the southern mid latitudes, with the tallest pedestals located in Utopia Planitia, Acidalia Planitia and Malea Planum. We use these data in conjunction with prior climate model results to identify both regional and global trends regarding ice accumulation during obliquity excursions. Our data provide evidence for multiple episodes of emplacement and removal of the mid-latitude ice-rich deposit based on stratigraphic relationships between pedestal craters and the close proximity of pedestals with significantly different heights.  相似文献   

12.
Abstract— We present numerical simulations of crater formation under Martian conditions with a single near‐surface icy layer to investigate changes in crater morphology between glacial and interglacial periods. The ice fraction, thickness, and depth to the icy layer are varied to understand the systematic effects on observable crater features. To accurately model impact cratering into ice, a new equation of state table and strength model parameters for H2O are fitted to laboratory data. The presence of an icy layer significantly modifies the cratering mechanics. Observable features demonstrated by the modeling include variations in crater morphometry (depth and rim height) and icy infill of the crater floor during the late stages of crater formation. In addition, an icy layer modifies the velocities, angles, and volumes of ejecta, leading to deviations of ejecta blanket thickness from the predicted power law. The dramatic changes in crater excavation are a result of both the shock impedance and the strength mismatch between layers of icy and rocky materials. Our simulations suggest that many of the unusual features of Martian craters may be explained by the presence of icy layers, including shallow craters with well‐preserved ejecta blankets, icy flow related features, some layered ejecta structures, and crater lakes. Therefore, the cratering record implies that near‐surface icy layers are widespread on Mars.  相似文献   

13.
A crater and its ejecta: An interpretation of Deep Impact   总被引:1,自引:0,他引:1  
We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.  相似文献   

14.
Viking images of Martian craters with rampart-bordered ejecta deposits reveal distinct impact ejecta morphology when compared to that associated with similar-sized craters on the Moon and Mercury. Topographic control of distribution, lobate and terraced margins, cross-cutting relationships, and multiple stratigraphic units are evidence for ejecta emplacement by surface flowage. It is suggested that target water explosively vaporized during impact alters initial ballistic trajectories of ejecta and produces surging flow emplacement. The dispersal of particulates during a series of controlled steam explosions generated by interaction of a thermite melt with water has been experimentally modeled. Preliminary results indicate that the mass ratio of water to melt and confining pressure control the degree of melt fragmentation (ejecta particle size) and the energy and mode of melt-ejecta dispersal. Study of terrestrial, lobate, volcanic ejecta produced by steam-blast explosions reveals that particle size and vapor to clast volume ratio are primary parameters characterizing the emplacement mechanism and deposit morphology. Martian crater ramparts are formed when ejecta surges lose fluidizing vapors and transported particles are deposited en masse. This deposition results from flow yield strength increasing above shear stress due to interparticle friction.  相似文献   

15.
Abstract— We use Mars Orbiter Laser Altimeter (MOLA) topographic data and Thermal Emission Imaging System (THEMIS) visible (VIS) images to study the cavity and the ejecta blanket of a very fresh Martian impact crater ?29 km in diameter, with the provisional International Astronomical Union (IAU) name Tooting crater. This crater is very young, as demonstrated by the large depth/diameter ratio (0.065), impact melt preserved on the walls and floor, an extensive secondary crater field, and only 13 superposed impact craters (all 54 to 234 meters in diameter) on the ?8120 km2 ejecta blanket. Because the pre‐impact terrain was essentially flat, we can measure the volume of the crater cavity and ejecta deposits. Tooting crater has a rim height that has >500 m variation around the rim crest and a very large central peak (1052 m high and >9 km wide). Crater cavity volume (i.e., volume below the pre‐impact terrain) is ?380 km3 the volume of materials above the pre‐impact terrain is ?425 km3. The ejecta thickness is often very thin (<20 m) throughout much of the ejecta blanket. There is a pronounced asymmetry in the ejecta blanket, suggestive of an oblique impact, which has resulted in up to ?100 m of additional ejecta thickness being deposited down‐range compared to the up‐range value at the same radial distance from the rim crest. Distal ramparts are 60 to 125 m high, comparable to the heights of ramparts measured at other multi‐layered ejecta craters. Tooting crater serves as a fresh end‐member for the large impact craters on Mars formed in volcanic materials, and as such may be useful for comparison to fresh craters in other target materials.  相似文献   

16.
P. Thomas  J. Veverka  S. Lee  A. Bloom 《Icarus》1981,45(1):124-153
A classification of Martian wind streaks has been developed to assist in investigations of eolian transport and related meteorological phenomena on Mars. Streaks can be grouped by their albedo contrast with their surroundings and by the presence of either topographic obstacles or sediment deposits at their points of origin. The vast majority of wind streaks can be included in three categories. (1) Bright streaks with no source deposit: interpreted to be formed by preferential deposition of dust from suspension. (2) Dark streaks with no source deposit: interpreted to be formed by preferential erosion of bright dust and its removal in suspension. (3) Dark streaks associated with deposits of sediment: interpreted to be formed by deposition of dark material moved by saltation. The orientations of the different streak types are distinctive and reflect both global flow patterns and slope-controlled winds. The wind directions derived from streaks and the geographical distribution of the features show a strong north-south asymmetry—consistent with the fact that perihelion (and hence maximum wind activity) occurs near southern summer solstice.  相似文献   

17.
We have identified two classes of crater clusters on Mars. One class is “small clusters” (crater diameter D∼ tens m, spread over few hundred m), fitting our earlier calculations for the breakup of weak stone meteoroids in the martian atmosphere [Popova, O.P., Nemtchinov, I.V., Hartmann, W.K., 2003. Meteorit. Planet. Sci. 38, 905-925]. The second class is “large clusters” (D∼ few hundred m, spread over 2 to 30 km), which do not fit any predictions for breakup of known meteoroid types. We consider a range of possible explanations. The best explanation relates to known, high-speed ejection of large, semi-coherent, fractured rock masses from the surface, as secondary debris from primary impacts. The clusters are probably due to breakup of partly fracture, few-hundred-meter scale weak blocks, especially during ascent (producing moderate lateral spreading velocities among the fragments during sub-orbital flight), and also during descent of the resulting swarm. These conclusions illuminate the launch conditions of martian meteorites, including fragmentation processes, although more work is needed on the lateral separation of fragments (during either atmosphere descent or ascent) due to the effects of volatiles in the projectiles. Martian meteorites probably come from smaller martian craters than the clusters' source craters. The latter probably have D?85 km, although we have not ruled out diameters as small as 15 km.  相似文献   

18.
We find evidence, by both observation and analysis, that primary crater ejecta play an important role in the small crater (less than a few km) populations on the saturnian satellites, and more broadly, on cratered surfaces throughout the Solar System. We measure crater populations in Cassini images of Enceladus, Rhea, and Mimas, focusing on image data with scales less than 500 m/pixel. We use recent updates to crater scaling laws and their constants (Housen, K.R., Holsapple, K.A. [2011]. Icarus 211, 856–875) to estimate the amount of mass ejected in three different velocity ranges: (i) greater than escape velocity, (ii) less than escape velocity and faster than the minimum velocity required to make a secondary crater (vmin), and (iii) velocities less than vmin. Although the vast majority of mass on each satellite is ejected at speeds less than vmin, our calculations demonstrate that the differences in mass available in the other two categories should lead to observable differences in the small crater populations; the predictions are borne out by the measurements we have made to date. In particular, Rhea, Tethys, and Dione have sufficient surface gravities to retain ejecta moving fast enough to make secondary crater populations. The smaller satellites, such as Enceladus but especially Mimas, are expected to have little or no traditional secondary populations because their escape velocities are near the threshold velocity necessary to make a secondary crater. Our work clarifies why the Galilean satellites have extensive secondary crater populations relative to the saturnian satellites. The presence, extent, and sizes of sesquinary craters (craters formed by ejecta that escape into temporary orbits around Saturn before re-impacting the surface, see Dobrovolskis, A.R., Lissauer, J.J. [2004]. Icarus 169, 462–473; Alvarellos, J.L., Zahnle, K.J., Dobrovolskis, A.R., Hamill, P. [2005]. Icarus 178, 104–123; Zahnle, K., Alvarellos, J.L., Dobrovolskis, A.R., Hamill, P. [2008]. Icarus 194, 660–674) is not yet well understood. Finally, our work provides further evidence for a “shallow” size–frequency distribution (slope index of ~2 for a differential power-law) for comets a few kilometers diameter and smaller.  相似文献   

19.
Abstract— A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.  相似文献   

20.
The estimates of the age of the Kaali impact structure (Saaremaa Island, Estonia) provided by different authors vary by as much as 6000 years, ranging from ~6400 to ~400 before current era (BCE). In this study, a new age is obtained based on 14C dating charred plant material within the proximal ejecta blanket, which makes it directly related to the impact structure, and not susceptible to potential reservoir effects. Our results show that the Kaali crater was most probably formed shortly after 1530–1450 BCE (3237 ± 10 14C yr BP). Saaremaa was already inhabited when the bolide hit the Earth, thus, the crater‐forming event was probably witnessed by humans. There is, however, no evidence that this event caused significant change in the material culture (e.g., known archeological artifacts) or patterns of human habitation on Saaremaa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号