首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rocks of the Swiss Central Alps consist of pre-Mesozoic and Mesozoic rocks which were metamorphosed during the Alpine orogeny. Eightysix samples from this area have been analyzed for their isotopic composition (310 mineral phases for their 18O values and 99 mineral phases for their D values).The mineral phases of pre-Mesozoic and Mesozoic rocks differ significantly in their stable isotope composition. The minerals in pre-Mesozoic rocks display a rather uniform oxygen and hydrogen isotope composition indicative of large-scale homogenization with magmatic fluids. The mineral phases of Mesozoic rocks, on the other hand, show a large variation in their isotopic composition, their 18O values are heavier, and their D values are isotopically lighter than the pre-Mesozoic phases. These data indicate the lack of a large-scale water supply to the gneissic cores of the Penninic nappes during Alpine metamorphism.Equilibrium conditions, as indicated by concordant oxygen isotope temperatures, are attained in several samples; disequilibrium, however, is more frequently observed, mainly in the central part of the Lepontin area. The pre-Mesozoic rocks recrystallized during Alpine metamorphism. This process was accompanied by partial reequilibration of the oxygen isotopes, and took place in a closed system. In the pre-Mesozoic rocks, the oxygen isotope fractionations, therefore, reflect the temperatures at the time of this recrystallization which, in many cases, is not the maximum temperature of Alpine metamorphism. There is strong evidence that oxygen isotope ratios are frozen during the progressive phase of a metamorphic event.Oxygen isotope fractionations indicate temperatures of Alpine metamorphism ranging from 500 ° C near Andermatt to 700 ° C near the Bergell granite.  相似文献   

2.
《Comptes Rendus Geoscience》2007,339(14-15):895-906
Carbonaceous chondrites are characterized by their enrichment in organic matter, mainly represented by insoluble organic matter (IOM), which consists of small aromatic units linked by short-branched aliphatic chains. Furthermore, IOM contains organic radicals heterogeneously distributed along with diradicaloids. These chemical features discriminate IOM from terrestrial counterparts. Isotopic compositions, especially the D/H isotopic ratio, are also distinct. IOM is highly enriched in D (D/H > 350 × 10−6), and the D/H isotopic ratio is heterogeneous. The isotopic composition is the result of interstellar-like processes that could have taken place during the first ages of the protosolar nebula. Chemical structure and isotopic composition clearly show that IOM is synthesized by an abiotic process and is subsequently affected by aqueous alteration or high-temperature metamorphism on the parent body.  相似文献   

3.
The attempt of this work is to use the LAMMA, a newly developed modern micro-beam analytical technique, to determine the lead isotopic composition of some grains picked out from the white aggregate in the Allende (C3V) carbonaceous chondrite. The experimental results show that the Pb/Pb model age of the Allende calculated on the basis of the206Pb/207Pb ratio is 4.56 ±0.008 b. y., just in agreement with the values reported in literature. The LAMMA provides a new and powerful tool in the analytical arsenal dealing with trace elements and isotopic compositions, due to its high sensitivity, rapid performence and good space resolution.  相似文献   

4.
Boron isotopic composition of subduction-zone metamorphic rocks   总被引:1,自引:0,他引:1  
Many arc lavas contain material derived from subducted oceanic crust and sediments, but it remains unresolved whether this distinctive geochemical signature is transferred from the subducting slab by aqueous fluids, silicate melts, or both. Boron isotopic measurements have the potential to distinguish between slab transfer mechanisms because 11B fractionates preferentially into aqueous fluids whereas little fractionation may occur during partial melting. Previous studies have shown that δ11B values of island arc lavas (−6 to +7) overlap the range of δ11B values for altered oceanic crust (−5 to +25) and pelagic sediments and turbidites (−7 to +11). Secondary ion mass spectrometry (SIMS) analyses of minerals in subduction-zone metamorphic rocks yield δ11B=−11 to −3 suggesting that slab dehydration reactions significantly lower the δ11B values of subducted oceanic crust and sediments. In order to explain the higher δ11B values reported for arc lavas as compared to subduction-zone metamorphic rocks, the B-bearing component derived from the metamorphosed slab must be enriched in 11B relative to the slab, favoring an aqueous fluid as the slab transfer mechanism.  相似文献   

5.
We analyzed the molybdenum (Mo) isotope compositions (IC) of 59 samples from two molybdenite mineralizations (Alpjahorn and Grimsel) and from a Mo-rich hydrothermal breccia (Grimsel) from the Aar Massif, Switzerland. The formation temperature of the Late Paleozoic Mo mineralizations (300-600 °C) is much higher than that of the Pliocene breccia (100-160 °C). The Mo IC of the molybdenites varies over 1.35‰. Even in a single hand specimen it spans 0.45‰, indicating that fractionation processes during molybdenite precipitation can vary on a cm scale. The Mo IC of most molybdenites analyzed here are significantly heavier than that of the host rock (δ98/95Mo = (0.05 ± 0.1)‰) and show a bimodal distribution centered around δ98/95Mo ≈ 1.1‰ and 0.2‰. This result rules out single stage Rayleigh fractionation as the relevant formation mechanism and instead, redox variations are suggested to be a main factor controlling the Mo IC of the studied high-temperature Mo deposits. The range of the Mo IC in one single deposit, the Alpjahorn, overlaps with the variation range of almost all other published values for Mo IC in Mo deposits. Compared to the molybdenites, the breccia shows an even wider variation of 3.0‰ (δ98/95Mo between −1.6‰ and +1.4‰). In contrast to the high-T molybdenite deposits, here the Mo was transported via oxidized surface waters into the breccia system, where it was reduced and precipitated. This indicates that oxidation and reduction of Mo complexes may lead to highly variable Mo IC in hydrothermal systems.  相似文献   

6.
7.
Concentrations and isotopic compositions were determined for H2, N2 and C extracted by stepwise pyrolysis from powdered meteorites, from residues of meteorites partially dissolved with aqueous HF, and from residues of meteorites reacted with HF-HCl solutions. The meteorites treated were the carbonaceous chondrites, Orgueil, Murray, Murchison, Renazzo and Cold Bokkeveld. Data determined for whole rock samples are in approximate agreement with previously published data. Acidification of the meteorites removed the inorganic sources of H2, so that H2 in the HF-HCl acid residues came primarily from insoluble organic matter, which makes up 70–80% fraction of the total carbon in carbonaceous meteorites. The δD in the organic matter differs markedly from previously determined values in organic matter in meteorites. The δD values of organic matter from acid residues of C1 and C2 carbonaceous chondrites range from +650 to + 1150%. The acid residues of the Renazzo meteorite, whose total H2 has a δD of +930‰, gave a δD value of +2500‰. Oxidation of the HF-HCl residue with H2O2 solution removes the high δD and the low δ15N components. The δ13C values range between ?10 and ?21 and δ15N values range between +40 and ?11. The δ15N of Renazzo is unusual; its values range between +150 and ?190.There is good correlation between δD and the concentration of H2 in the acid residues, but no correlation exists between δD, δ13C and δ15N in them. A simple model is proposed to explain the high δD values, and the relationships between δD values and the concentration of H2. This model depends on the irradiation of gaseous molecules facilitating reaction between ionic molecules, and indicates that an increase in the rate of polymerization and accumulation of organic matter on grains would produce an increase in the deuterium concentration in organic matter.  相似文献   

8.
The isotopic compositions of titanium in eight grains of hibonite (CaAI12O19) from the carbonaceous chondrite Murchison have been determined by high precision secondary ion mass spectrometry using an ion microprobe. The titanium in the hibonites varies greatly in 50Ti, from about ?42 to +8 permil (relative to terrestrial) with smaller (up to 4 permil), but clearly resolvable, effects in 46Ti and 48Ti. These results complement ion probe measurements by Faheyet al. (1985) of a 100 permil excess of 50Ti in a hibonite grain from the carbonaceous chondrite Murray, and confirm the presence of widespread negative anomalies suggested by the results of Hutcheonet al. (1983) on hibonites from Murchison. The magnitude of these variations seems explicable only in terms of nucleogenic processes which produced extremely variable titanium isotopic abundances in the hibonite source materials. The hibonites evidently did not participate to the same extent as most material in the mixing and homogenisation processes that accompanied the formation and later evolution of the solar system. Thus, significant source materials of the hibonites may be the supernova condensates of Clayton (1978) and may support the concept of “chemical memory” (Clayton, 1978; Niemeyer and Lugmair, 1984).  相似文献   

9.
To better understand the role of aqueous alteration on the CR chondrite parent asteroid, a whole-rock oxygen isotopic study of 20 meteorites classified as Renazzo-like carbonaceous chondrites (CR) was conducted. The CR chondrites analyzed for their oxygen isotopes were Dhofar 1432, Elephant Moraine (EET) 87770, EET 92042, EET 96259, Gao-Guenie (b), Graves Nunataks (GRA) 95229, GRA 06100, Grosvenor Mountains (GRO) 95577, GRO 03116, LaPaz Ice Field (LAP) 02342, LAP 04720, Meteorite Hills (MET) 00426, North West Africa (NWA) 801, Pecora Escarpment (PCA) 91082, Queen Alexandra Range (QUE) 94603, QUE 99177, and Yamato-793495 (Y-793495). Three of the meteorites, Asuka-881595 (A-881595), GRA 98025, and MET 01017, were found not to be CR chondrites. The remaining samples concur petrographically and with the well-established oxygen-isotope mixing line for the CR chondrites. Their position along this mixing line is controlled both by the primary oxygen-isotopic composition of their individual components and their relative degree of aqueous alteration. Combined with literature data and that of this study, we recommend the slope for the CR-mixing line to be 0.70 ± 0.04 (2σ), with a δ17O-intercept of −2.23 ± 0.14 (2σ).Thin sections of Al Rais, Shi?r 033, Renazzo, and all but 3 samples analyzed for oxygen isotopes were studied petrographically. The abundance of individual components is heterogeneous among the CR chondrites, but FeO-poor chondrules and matrix are the most abundant constituents and therefore, dominate the whole-rock isotopic composition. The potential accreted ice abundance, physico-chemical conditions of aqueous alteration (e.g. temperature and composition of the fluid) and its duration control the degree of alteration of individual CR chondrites. Combined with literature data, we suggest that LAP 02342 was exposed to lower temperature fluid during alteration than GRA 95229. With only two falls, terrestrial alteration of the CR chondrites complicates the interpretation of their whole rock isotopic composition, particularly in the most aqueously altered samples, and those with relatively higher matrix abundances. We report that QUE 99177 is the isotopically lightest whole rock CR chondrite known (δ18O = −2.29‰, δ17O = −4.08‰), possibly due to isotopically light unaltered matrix; which shows that the anhydrous component of the CR chondrites is isotopically lighter than previously thought. Although it experienced aqueous alteration, QUE 99177 provides the best approximation of the pristine CR-chondrite parent body’s oxygen-isotopic composition, before aqueous alteration took place. Using this value as a new upper limit on the anhydrous component of the CR chondrites, water/rock ratios were recalculated and found to be higher than previously thought; ratios now range from 0.281 to 1.157. We also find that, according to their oxygen isotopes, a large number of CR chondrites appear to be minimally aqueously altered; although sample heterogeneity complicates this interpretation.  相似文献   

10.
The study presents composition data of 87 surface water samples from high alpine catchments of the Zermatt area (Swiss Alps). The investigated area covers 170 km2. It was found that the surface runoff acquires the dissolved solids mostly by reaction of precipitation water with the minerals of the bedrock. Total dissolved solids (TDS) vary from 6 to 268 mg L?1. All collected water shows a clear chemical signature of the bedrock mineralogy. The contribution of atmospheric input is restricted to small amounts of ammonium nitrate and sodium chloride. NH4 is a transient component and has not been detected in the runoff. Evaporation is not a significant mechanism for TDS increase in the Zermatt area. The chemical composition of the three main types of water can be related to the mineralogy of the dominant bedrock in the catchments. Specifically, Ca-HCO3 (CC) waters develop from metamorphic mafic rocks and from carbonate-bearing schists. Mg-HCO3 water originates from serpentinites and peridotites. Ca-SO4 (CS) waters derive from continental basement rocks such as pyrite-rich granite and gneiss containing oligoclase or andesine. The collected data suggest that, together with reaction time, modal sulfide primarily controls and limits TDS of the waters by providing sulfuric acid for calcite (CC waters) and silicate (CS waters) dissolution. If calcite is present in the bedrock, its dissolution neutralizes the acid produced by sulphide weathering and buffers pH to near neutral to weakly alkaline conditions. If calcite is absent, the process produces low-pH waters in gneiss and granite catchments. The type of bedrock and its mineral assemblage can be recognized in water leaving very small catchments of some km2 area. The large variety of water with a characteristic chemical signature is an impressive consequence of the richly diverse geology and the different rock inventory of the local catchments in the Zermatt area.  相似文献   

11.
J. Dostal  S. Capedri 《Lithos》1979,12(1):41-49
A sequence of amphibolite to granulite facies metasedimentary and mafic metaigneous rocks from the western Italian Alps has been analysed for rare earth elements (REE). In this sequence, the metasedimentary granulites have probably been affected by a melting event while the metaigneous granulites remained unaffected. Metasedimentary granulites have a less fractionated chondrite-normalized REE pattern than equivalent amphibolite facies rocks. The granulites tend to have a higher content of heavy REE and lower abundances of light REE (LREE). The leucosomes of migmatitic granulites have lower REE content than the melanocratic bands and both these rock types have variable relative abundances of Eu. The mafic granulites have LREE enriched patterns while the amphibolites are slightly depleted in LREE. The differences between the mafic granulites and amphibolites are probably of pre-metamorphic origin.  相似文献   

12.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   

13.
HP metamorphic belt of the western Alps   总被引:1,自引:0,他引:1  
The understanding of the subduction-related processes benefited by the studies of the high-pressure (HP) meta-morphic rocks from the western Alps. The most stimu-lating information was obtained from the inner part of the western Alpine belt, where most tectonic units show an early Alpine eclogite-facies recrystallisation. This is especially true for the Austroalpine Sesia Zone and the Penninic Dora-Maira massif. From the Sesia zone,which consists of a wide spectrum of continental crust lithologies recrystallised to quartz-eclogite-facies min-eral assemblages, the first finding of a jadeite-bearingmeta-granitoid has been described, supporting evidencethat even continental crust may subduct into the mantle.From the Dora-Maira massif the first occurrence of regional metamorphic coesite has been reported, open-ing the new fertile field of the ultrahigh-pressure meta-morphism (UHPM), which is now becoming the rule in the collisional orogenic belts.  相似文献   

14.
The Ceneri Zone is a unit of the crystalline basement of the Southern Alps. Its northern boundary is the Tonale Line segment of the Periadriatic Line, an important tectonic lineament separating the Oligocene and younger features of the Central Alps from the older metamorphic and structural trends of the Southern Alps. Unmetamorphosed Permian and younger sedimentary units lap onto the Southern Alpine basement from the south.Potassium-argon results from the Ceneri Zone define a Hercynian age pattern typical for the basement of continental Europe. This pattern extends to within at least 100 meters of the Tonale Line. Thus, amphibolite facies metamorphism in this region occurred around 325 m.y. ago. The geochronologic similarity of the Southern Alps to many other European regions must be taken into account in megatectonic theories.In detail, the Hercynian age pattern of the Ceneri Zone is complicated. Some hornblendes have apparent ages between the Hercynian and a Caledonian value (430 m.y.). They probably retained some radiogenic argon during the Hercynian upper amphibolite facies metamorphism. In addition, mica results between 200 and 300 m.y. have a strong geographic correlation. Apparently, the northwestern portion of the Ceneri Zone was reheated or mildly metamorphosed during the Upper Triassic to Lower Jurassic. A relationship between these ages and 170–180 m.y. ages from the neighboring Ivrea-Verbano Zone seems likely. No geologic evidence for any post-Hercynian event has been noted as yet in the Ceneri Zone.  相似文献   

15.
Zusammenfassung Es wurden Kalifeldspäte aus Orthogneisen, Paragneisen und Glimmerschiefern des westlichen Tauemfensters (Hohe Tauern, Tirol) mit optischen und röntgenographischen Methoden im Hinblick auf ihren Strukturzustand untersucht.Es zeigte sich, daß in den Randbereichen des Tauemfensters in Gesteinen der Grünschieferfazies weitgehend geordneter Mikroklin mit einem optischen Achsenwinkel 2 Vx 80°, Auslöschungswinkel Z (010)=15–20°, Doppelbrechung nz-nx= 0,0065, Triklinität=0,90-–0,95, ca. 0,88 Al auf T1O-Position und einem Ab-Gehalt von ca. 5 Gew.% auftritt. Dagegen wurden in Gesteinen der schwachtemperierten Amphibolitfazies des zentralen Bereichs Orthoklase bis intermediäre Mikrokline mit stark schwankenden optischen Eigenschaften, mit Triklinitäten zwischen 0 und 0,7, 0,8 bis 0,9 Al in T1-Positionen, 0,45–0,8 Al auf T1O und Ab-Gehalten von ca. 10 Gew.% festgestellt. Die Kalifeldspatkristalle zeigen ungleichmäßige Auslöschung mit Winkeln von Z (010) zwischen 0 und 15°, 2 Vx zwischen 50 und 75° und nz-nx=0,005 bis 0,006. Teilweise ist Zonarbau mit geringerer Triklinität am Kornrande erkennbar. Diese undulös auslöschenden Kalifeldspäte enthalten einzelne schmale Lamellen von maximal triklinem Mikroklin mit Z (010)=15–20° und nz-nx= 0,006–0,007.Die Grenze zwischen dem Verbreitungsgebiet von maximalem Mikroklin einerseits und Orthoklas bis intermediärem Mikroklin andererseits verläuft in den westlichen Hohen Tauern ungefähr konform mit der Albit-Oligoklas-Grenze (Morteani &Raase, 1974) und mit der aus Sauerstoff-Isotopen-Untersuchungen bestimmten 500° C-Isotherme (Hoernes &Friedrichsen, 1974).
The potassic feldspar in orthogneisses, paragneisses, and mica schists from the western Tauernfenster (Hohe Tauern, Tyrol) were studied by optical and X-ray methods with regard to their structural state and in relation to grade of metamorphism.In the peripheral region of the Tauernfenster in greenschist-facies rocks highly triclinic microcline occurs with an optic angle 2 Vx of about 80°, extinction angle Z (010) =15–20°, birefringence nz-nx=0.0065, triclinicity=0.90–0.95, approx. 0.88 Al in T1O-site, and an Ab-content of about 5 wt.%. In the central area with rocks of the low-grade amphibolite facies, on the other hand, orthoclase to intermediate microcline with highly variable optical properties, triclinicities in the range of 0–0.7, 0.8–0.9 Al in T1-sites, 0.45–0.8 Al in T1O-site, and an Ab-content of about 10 wt.% was recognized. The K-feldspar grains have nonuniform extinction Z (010) scattering in the range of 0–15°, 2 Vx in the range of 50–75°, and nz-nx= 0.005–0.006. Sometimes a zonal structure with lower triclinicity exists at the rim. These undulatory K-feldspar grains usually contain small lamellae of highly triclinic microcline with Z (010) =15–20° and nz-nx=0.006–0.007.From the occurrence of maximum microcline and of orthoclase to intermediate microcline in the Hohe Tauern area an isograd was defined that is approximately conformable with the albite-oligoclase isograd (Morteani &Raase, 1974) and with the 500° C isotherm based on oxygen isotope analyses (Hoernes &Friedrïchsen, 1974).

Résumé Les feldspaths potassiques d'orthogneiss, de paragneiss et de micaschistes de la Fenêtre des Tauern occidental (Hohe Tauern, Tirol) ont été étudiés du point de vue de leur état structural.Dans les roches du faciès schistes verts de la région périphérique de la Fenêtre des Tauern les microclines sont caractérisés par un angle des axes optiques 2 Vp =80°, un angle d'extinction ng (010)=15–20°, une biréfringence ng-np=0,0065, une triclinicité= 0,90–0,95, 0,88 Al dans le site T1O et par une teneur en albite d'environ 5%. Au contraire, dans les roches du faciès amphibolite à faible degré de la région centrale, ont été observées des orthoses allant à des microclines intermédiaires avec des propriétés optiques très variables, un degré de triclinicité de 0 à 0,7, 0,8–0,9 Al dans les sites T1, 0,45–0,8 Al dans T1O et avec une teneur en albite d'environ 10%.Les cristaux de feldspath montrent une extinction irrégulière avec des angles Z (010) variable de 0 à 15°, 2 Vp de 50 à 75° et ng-np=0,005–0,006.On peut voir quelquefois une structure zonée avec une triclinicité moindre au bord des cristaux. Ces feldspaths potassiques contiennent de minces lamelles de microcline à triclinicité maximum, avec ng (010)=15–20° et ng-np 0,006–0,007.La limite entre les régions à microcline maximum d'une part, et à orthose ou microcline intermédiaire d'autre part, suit, dans les Hohe Tauern, sensiblement l'isograde albite-oligoclase (Morteani &Raase, 1974) et, l'isotherme de 500° C telle qu'elle fut determinée les isotopes de l'oxygène (Hoernes &Friedrichsen, 1974).

, ( , ) ., 2 Vx80°, Z (010)=15–20°, nz–nx=0,0065, =0,90–0,95, 0,88 l T1O Ab 5 .-%. , 0 0,7, 0,8-0,9 1 T1 l 10 .-%. Z V (010) 0 15°, 2 Vx 50 75° nz–nx=0,005–0,006. . Z V (010) =15-20° nz–nx=0,006–0,007. , Morteani & Raase (1974) 500° , Hoernes & Friedrichsen (1974).
  相似文献   

16.
In 61 pairs of coexisting biotites and muscovites from the Central Alps total Al scatters considerably, but in both series a gradual increase is noticed with increasing metamorphic grade. The ratio Al Mu tot /Al Bi tot remains virtually constant (1.61 average for greenschist facies, 1.57 for amphibolite facies). Tetrahedral Al varies little in biotites and increases in muscovites-phengites with rising metamorphic grade; accordingly the ratio Al Mu IV /Al Bi IV increases slightly with grade. Far the best control of metamorphism is evidenced by octahedral Al. In the muscovite series, and still more pronounced in the biotite series, AlVI increases with increasing metamorphic grade. Consequently 1 $$K_D = \frac{{Al_{Mu}^{VI} }}{{Al_{Bl}^{VI} }}$$ decreases from 14 to 3. A map (Fig. 6) representing the regional distribution of the KD values locates a 100 km long and 23 km broad central zone with low KD. The outline of this central core almost coincides with the isograds anorthite-diopside-calcite and labradorite-pyroxene-hornblende of the Tertiary regional metamorphism; with some deviations this core also agrees with the zone in which phenomena of partial anatexis are observed. The KD values of micas from anateotic pegmatites agree with those of associated gneisses and schists. The study demonstrates that in the course of progressive regional metamorphism equilibrium has been approached to an unexpected extent and that the two micas coexisted in a strict sense.  相似文献   

17.
Poorly crystalline carbonaceous matter was observed in chlorite to sillimanite grade metasediments from the Trois Seigneurs Massif, in contrast to other studies of carbon crystallinity which observed well crystallised graphite under upper greenschist facies conditions. Using transmission electron microscopy four types of carbon particle were identified; globular carbon, composite flakes, homogeneous flakes and crystalline graphite. Globular carbon and composite flakes are poorly crystalline microporous carbon. Homogeneous flakes decompose in the electron beam and are probably composed of heavy volatile hydrocarbons. Graphite is confined to samples from retrograde shear zones and often occurs with globular carbon. The lack of graphitisation in metasediments is probably a consequence of the microporous structure of the carbonaceous matter combined with low f O 2. The preservation of carbonaceous matter in the Trois Seigneurs metasediments is not compatible with the metasediments having been externally buffered by a high X H2O fluid syn-metamorphism. An alternative hypothesis of internal buffering is preferred to explain the carbonaceous matter in the Trois Seigneurs metasediments.  相似文献   

18.
Remnants of the Liguria-Piemont Ocean with its Jurassic ophiolitic basement are preserved in the South Pennine thrust nappes of eastern Switzerland. Analysis of South Pennine stratigraphy and comparison with sequences from the adjacent continental margin units suggest that South Pennine nappes are relics of a transform fault system. This interpretation is based on three arguments: (1) In the highly dismembered ophiolite suite preserved, Middle to Late Jurassic pelagic sediments are found in stratigraphic contact not only with pillow basalts but also with serpentinites indicating the occurrence of serpentinite protrusions along fracture zones. (2) Ophiolite breccias (»ophicalcites«) occurring along distinct zones within peridotite-serpentinite host rocks are comparable with breccias from present-day oceanic fracture zones. They originated from a combination of tectonic and sedimentary processes: i.e. the fragmentation of oceanic basement on the seafloor and the filling of a network of neptunian dikes by pelagic sediment with locally superimposed hydrothermal activity and gravitational collapse. (3) The overlying Middle to Late Jurassic radiolarian chert contains repeated intercalations of massflow conglomerates mainly comprising components of oceanic basement but clasts of acidic basement rocks and oolitic limestone also exist. This indicates a close proximity between continental and oceanic basement. The rugged morphology manifested in the mass-flow deposits intercalated with the radiolarites is draped by pelagic sediments of Early Cretaceous age.  相似文献   

19.
Matrix compositions of 32 carbonaceous chondrites have been analyzed by an electron microprobe defocussed-beam technique. Except in those chondrites that show evidence of metamorphism, matrices are compositionally similar and have correlation coefficients of +0.96 or greater. Weight per cent Mg/Si in matrices is constant (0.82 ± 0.05) but less than ratios derived from bulk analyses. Matrices in metamorphosed meteorites are Mg-depleted relative to those of other chondrites. Al Rais and Renazzo (anomalous by any classification scheme) have Mg-enriched matrices. Average matrix compositions cluster into chemical subgroups similar to those based on bulk chemical and petrographie criteria [C1, C2, C3(0), C3(V)]. C1 matrices are particularly variable in composition from point to point within the same meteorite, but points within individual breccia clasts appear to be more compositionally uniform. Cl matrices are depleted in Na, S, and Ca relative to solar and C2 matrix values, probably as a result of leaching. Matrix Ca/A1 ratios are highly variable and generally fall below the accepted meteoritic value. The only strong interelement correlation is for Fe, Ni, and S in C2 matrices, suggesting mixing of variable proportions of two components: Mg-rich phyllosilicate and a Ni-bearing chalcophile phase. The amount of magnetite associated with C2 matrix appears to vary systematically with matrix composition. Isotopic, chemical, and mineralogical constraints suggest that matrix, although appreciably altered in some meteorites, is chiefly a solar system condensation product which contains an admixture of unprocessed interstellar dust.  相似文献   

20.
Graphitization of dispersed carbonaceous material in metamorphic rocks   总被引:2,自引:0,他引:2  
Dispersed carbonaceous material concentrated from some New Zealand and Japanese metamorphic rocks has been analysed by X-ray and electron diffraction methods. A classification to describe sub-graphitic material (graphite-d) is proposed. Progressive graphitization is related to metamorphic grade as conventionally defined by mineral assemblages. Thus carbonaceous material in zeolite facies rocks as well as some lawsonite-albite-chlorite facies rocks is nearly amorphous (graphite-d 3); material from slightly higher grade rocks of the lawsonite-albite-chlorite, pumpellyite-actinolite, greenschist, and blueschist facies show a more advanced degree of crystallinity (graphite-d 2,-d 1). Fully-ordered graphite is first recognized in albite-epidote amphibolite and amphibolite facies rocks.X-ray diffraction data are also presented for New Zealand coals of known rank. Lignite and high volatile bituminous coal samples yield graphite -d 3 patterns. A low volatile bituminous sample is transitional between graphite-d 2 and -d 3, while a semi-anthracite sample is graphite-d 2.Analysis of X-ray and electron diffraction data permits some understanding of the structure of sub-graphitic materials. It is shown that peak broadening may be produced by structural variations within a given sample, and for this reason the estimation of crystallite size solely on the basis of diffractograms should be regarded with caution.The controls of graphitization are discussed and it is tentatively concluded that graphitization is primarily dependent upon metamorphic temperature; pressure and variation in starting material presumably constitute secondary controls. Under metamorphic conditions, true graphite probably forms above 400° C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号