首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

2.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO–Al2O3 and negative MgO–Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a “clinopyroxene paradox”. The highest magnesium-bearing MORB sample E13-3B (MgO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4 ±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure ~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the “clinopyroxene paradox”.  相似文献   

3.
Lunar meteorite Northwest Africa 773 (herein referred to as NWA773) is a breccia composed predominantly of mafic volcanic components, including a prominent igneous clast lithology. The clast lithology is an olivine-gabbro cumulate, which, on the basis of mineral and bulk compositions, is a hypabyssal igneous rock related compositionally to volcanic components in the meteorite. The olivine-gabbro lithology exhibits cumulus textures and, in our largest section of it, includes some 48% olivine (Fo64 to Fo70, average Fo67), 27% pigeonite (En60Fs24Wo16 to En67Fs27Wo6), 11% augite (En50Fs17Wo33 to En47Fs13Wo40), 2% orthopyroxene (En70Fs26Wo4), 11% plagioclase (An80 to An94), and trace barian K-feldspar, ilmenite, Cr-spinel, RE-merrillite, troilite, and Fe-Ni metal. The Mg/Fe ratios of the mafic silicates indicate equilibration of Fe and Mg; however, the silicates retain compositional variations in minor and trace elements that are consistent with intercumulus crystallization. Accessory mineralogy reflects crystallization of late-stage residual melt. Both lithologies (breccia and olivine cumulate) of the meteorite have very-low-Ti (VLT) major-element compositions, but with an unusual trace-element signature compared to most lunar VLT volcanic compositions, i.e., relative enrichment in light REE and large-ion-lithophile elements, and greater depletion in Eu than almost all other known lunar volcanic rocks. The calculated composition of the melt that was in equilibrium with pyroxene and plagioclase of the cumulate lithology exhibits a KREEP-like REE pattern, but at lower concentrations. Melt of a composition calculated to have been in equilibrium with the cumulate assemblage, plus excess olivine, yields a major-element composition that is similar to known green volcanic glasses. One volcanic glass type from Apollo 14 in particular, green glass B, type 1, has a very low Ti concentration and REE characteristics, including extremely low Eu concentration, that make it a candidate parent melt for the olivine-gabbro cumulate. We infer an origin for the parent melt of NWA773 volcanic components by assimilation of a trace-element-rich partial or residual melt by a magnesian, VLT magma deep in the lunar crust or in the mantle prior to transportation to the near-surface, accumulation of olivine and pyroxene in a shallow chamber, eruption onto a volcanic surface, and incorporation of components into local, predominantly volcanic regolith, prior to impact mixing of the volcanic terrain and related hypabyssal setting, and ejection from the surface of the Moon. Volcanic components such as these probably occur in the Oceanus Procellarum region near the site of origin of the green volcanic glasses found in the Apollo 14 regolith.  相似文献   

4.
The Tekkeda? volcanic complex, which extends as a ridge in the direction of NW–SE, is one of the poorly known volcanic centers and is exposed to the southwest of Kayseri located within the Central Anatolian Volcanic Province (CAVP) of Turkey. The mineralogical composition of Tekkeda? volcanics reveals an assemblage of plagioclase (labradorite, bytownite)+pyroxene (augite, diopside and enstatite)+Fe–Ti oxide (magnetite, rutile)±olivine (forsterite) mineral composition having hypocrystaline porphryric, hypohyaline porphryric, gleomeroporphryric and seriate textures under the microscope. Confocal Raman Spectroscopy (CRS) has been used to define the mineral types. Tekkeda? volcanics have medium K2O contents and are calc-alkaline in character. Geochemically, Tekkeda? volcanics show a narrow range of major element compositions and are classified as augite andesite/basaltic andesite. On the variation diagrams based on MgO versus major and trace elements, they show good positive and negative correlations, indicating fractional crystallization of plagioclase, clinopyroxene and Fe–Ti oxide. Tekkeda? volcanics display enrichment in large-ion lithophile elements (LILEs) relative to high field-strength elements (HFSEs) in chondrite, MORB, E-MORB and lower crust normalized multi-element diagrams. In all normalized multi-element diagrams, the trace element patterns of all samples are similar in shape and exhibit depletions in Ba, Nb, P and Ti as characteristics of subduction-related magmas. Rare earth element (REE) patterns for Tekkeda? volcanics show REE enrichment with respect to chondrite values. They exhibit marked enrichment in light rare earth elements (LREEs) ((La/Sm)N=4.13–4.62) relative to heavy rare earth elements (HREEs) ((Sm/Lu)N=1.34–1.92). Furthermore, all samples have negative Eu anomalies ((Eu/Eu*)N=0.77–0.90), indicating the significant role of plagioclase in the fractional crystallization. Elemental ratios such as K/P (15.46–21.69), La/Nb (2.01–4.26), Rb/Nb (8.74–10.59), Ba/Nb (38.54–75.77), Nb/Ta (1.16–2.14), Ce/P (2.13–4.32) and Th/U (1.77–3.97) propose that the magma was subjected to conceivable crustal contamination during the evolution of these Tekkeda? volcanics. This statement is supported by the AFC modeling based on the trace elements. As a result, despite the lack of isotopic data, the petrographic and geochemical results suggest a significant role of plagioclase, clinopyroxene and Fe–Ti oxide fractionation during the evolution of the Volcanic Arc Basalts (VAB) nature of the Tekkeda? volcanics. Furthermore, these results reveal that the volcanics of Tekkeda? were produced from a parental magma derived from an enriched source of mixed subduction and/or crustal products.  相似文献   

5.
The Kuznetsk Basin volcanic rocks are close in age (from 252.3 ± 0.6 to 246.2 ± 1.4 Ma) to the traps of the West Siberian Plate and Siberian craton, which formed as a result of the Permo-Triassic plume activity. The geologic and petrographic features evidence that the andesitic basalts exposed in the Karakan and Elbak quarries are effusive rocks; most of them are andesitic basalts, and the rest are trachyandesitic basalts. The mineral composition is as follows: olivine Fo59–66, plagioclase An47–60, and clinopyroxene En47–42Fs25–12Wo42–33; Mg# = 82–63. Using the COMAGMAT 3.5 program, the magma crystallization conditions during the andesitic-basalt formation were determined: 1109–1105 ºC, buffer QFM-NNO. The studied rocks are enriched in LREE ((La/Yb)ch = 4.7–7.5) and are depleted in HREE ((Sm/Yb)ch = 2.0–2.8). A specific geochemical feature of the rocks is strong Nb, Ta, Ti, and Eu negative anomalies ((La/Nb)PM = 4.5–1.6, (La/Ta)PM = 3.2–2.0, Eu/Eu? = 0.7) and a positive U anomaly on their normalized element patterns; ?Nd(T) varies from +2.3 to +3.1. The HREE depletion of the Kuznetsk Basin volcanic rock points to the presence of garnet in the mantle source during their generation. The low Mg# indicates that the parental melts are not of the primary-mantle genesis but are probably the product of differentiation in deep-seated intermediate magma chambers.  相似文献   

6.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

7.
The 660 m thick Basistoppen sill is an Eocene, tholeiitic, layeredintrusion emplaced in the upper part of the Skaergaard complexshortly after solidification of the Skaergaard magma. Despiteits small size, the Basistoppen sill has one of the most extensivedifferentiation sequences known. The ranges of the solid solutionsin olivine, plagioclase, and pyroxene from the Basistoppen arecomparable to those in the Skaergaard and Bushveld intrusions.The rocks of the sill are orthocumulates composed of approximately35% trapped liquid and 65% cumulus minerals and can be dividedinto zones based on changes in the cumulus mineral assemblage.From the base upward those zones are: a Gabbro Picrite Zonecontaining cumulus olivine, Fe-Cr spinel, and minor biotite;a Bronzite Gabbro Zone containing cumulus orthopyroxene, Ca-richclinopyroxene, plagioclase, and minor Fe-Cr spinel; a PigeoniteGabbro Zone containing cumulus plagioclase, Ca-rich clinopyroxene,pigeonite, magnetite, and minor ilmenite; and a Fayalite DioriteZone containing cumulus plagioclase, Ca-rich clinopyroxene,magnetite, ilmenite, apatite, and olivine. The Basistoppen isoverlain by a zoned granophyre sill that was most likely derivedin part from the Basistoppen magma and in part from melted Precambriangneiss. The excellent exposure, uncomplicated structure, goodchilled margin, and lack of strong modal layering facilitatethe calculation of a differentiation trend for the Basistoppensill. During crystallization the Basistoppen magma became progressivelyricher in Fe, P, Na, K, Zn, Rb, Zr, La, Sm, and Th, became progressivelypoorer in Mg, Ca, Al, Cr, and Ni, and remained relatively unchangedin Si, Sc, and Sr through at least the first 90% of crystallization.  相似文献   

8.
The Freetown layered complex, located on the western coast of Sierra Leone, is a rift-related tholeiitic intrusion associated with the Jurassic (~193 Ma) opening of the Atlantic Ocean at midlatitude. The complex is ~ 60 km long, 14 km wide, and 7 km thick along a major E-W traverse extending from Waterloo to York. Gravity data and dips of laminations in the layered rocks suggest that the intrusive complex is lopolithic in shape, with some parts presently being submarine.

The exposed rocks consist of a rhythmically layered sequence of troctolite, olivine gabbro, gabbronorite, gabbro, and anorthosite. The complex has been divided into four zones delineated by (1) topographic expression, whereby the base of each zone forms a scarp, and the top forms dip slopes and strike valleys; and (2) cyclical repetition of rock types (Wells, 1962). A new detailed stratigraphic section along the Waterloo-York traverse is presented, in which Zone 3 is subdivided into an upper 2000-m-thick anorthosite-gabbro interval and a lower 1700-m-thick rhythmically layered subzone.

Inverted pigeonite first became a cumulus phase at the bottom of Zone 2, before disappearing near the middle of Zone 3 at the anorthosite-gabbro interval, only to reappear at the top of Zone 4 with cumulus titanomagnetite. Mineral compositions in the complex range from An72 to An72 plagioclase, Fo56 to Fo75 olivine, En38.5 to En44.8 augite, and En54.9 to En74.6 orthopyroxene. The compositions of plagioclase and olivine in Zone 2 vary irregularly, although the overall trend is toward reverse differentiation. By contrast, Zone 4 is characterized by a rapid decrease in Fo and An from the base of the zone upward, followed by an increase. Cryptic variation also is shown by the Ni content of olivine and Cr content of clinopyroxene.

The overall pattern of cryptic variation in the complex suggests continual leakage of fresh magma into the chamber, followed by oscillatory spikes in the rhythmically layered subzone of Zone 3, where major influxes of new magma occurred. The changes in mineral compositions and modal abundances as a function of stratigraphic height are the result of magma recharge, followed by mixing of new and evolved resident magmas in the Freetown magma chamber. This probably resulted in the expansion of the chamber and crystallization in situ without any discharge. The inferred crystallization sequence for each zone is different, reflecting different magma compositions and changes that occur in the magmas during crystallization. The alternative hypotheses that the Freetown Complex formed from a single parental magma, or that mineral layering was the result of the crystallization sequence Fe-Ti oxides→olivine→pyroxene→plagioclase, are not supported by the evidence.  相似文献   

9.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

10.
This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate–carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate–silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.  相似文献   

11.
Basalts dredged from the south wall of a fracture zone transecting the southern Mid-Atlantic Ridge (SMAR) at 54° S are unusual in that they include a suite of highly olivine phyric basalts, sampled along with more normal sparsely plagioclase phyric basalts, and a highly plagioclase phyric basalt. Four basalt types (olivine phyric, sparsely plagioclase phyric, evolved sparsely plagioclase phyric and highly plagioclase phyric) are readily distinguished on the basis of petrography, mineralogy and bulk composition. They range from primitive to evolved, with the olivine phyric basalts having elevated MgO (up to 15.5%) and the plagioclase phyric basalt having elevated Al2O3 (19.3%) and CaO (13.1%) contents. Compositional variations are extremely consistant, with the olivine phyric basalts and the sparsely plagioclase phyric basalts defining coherent linear trends. On the basis of the ratios and covariation of the incompatible trace elements Zr, Nb, Y and Ba, distinct parental magmas for each basalt type are required. An investigation of Fe-Mg and Mg-Ni distribution coefficients between olivine and magma indicates that olivines from the olivine phyric basalts are on average too forsteritic and too Ni poor to have crystallized in a magma corresponding to the host bulk rock composition. This implies that these basalts are enriched in xenocrystic olivine. Olivines from the other basalt types are mostly of equilibrium composition, although there are some exceptions. Petrogenetic models for the formation of the different basalt types are quantitatively evaluated in terms of fractional crystallization/crystal accumulation processes. These indicate that (1) the olivine phyric basalts are the products of olivine and minor Cr-spinel accumulation and do not represent analogues of primary magma, or a liquid fractionation trend; (2) that the sparsely plagioclase phyric basalts were formed by polybaric fractional crystallization of olivine, plagioclase and clinopyroxene; and (3) that the evolved sparsely plagioclase phyric basalts are not readily related to one another. The single highly plagioclase phyric basalt is unrelated to the other basalt types and is cumulus enriched in plagioclase.The different basalt types are unrelated to one another and document the presence of at least four distinct magma types erupted in close proximity at this ridge/transform intersection on the southern end of the Mid-Atlantic Ridge.  相似文献   

12.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

13.
Hualalai Volcano, Hawaii, is best known for the abundant and varied xenoliths included in the historic 1800 Kaupulehu alkalic basalt flow. Xenoliths, which range in composition from dunite to anorthosite, are concentrated at 915-m elevation in the flow. Rare cumulate ultramafic xenoliths, which include websterite, olivine websterite, wehrlite, and clinopyroxenite, display complex pyroxene exsolution textures that indicate slow cooling. Websterite, olivine websterite, and one wehrlite are spinel-bearing orthopyroxene +olivine cumulates with intercumulus clinopyroxene +plagioclase. Two wehrlite samples and clinopyroxenite are spinel-bearing olivine cumulates with intercumulus clinopyroxene+orthopyroxene + plagioclase. Two-pyroxene geothermometry calculations, based on reconstructed pyroxene compositions, indicate that crystallization temperatures range from 1225° to 1350° C. Migration or unmixing of clinopyroxene and orthopyroxene stopped between 1045° and 1090° C. Comparisons of the abundance of K2O in plagioclase and the abundances of TiO2 and Fe2O3in spinel of xenoliths and mid-ocean ridge basalt, and a single 87Sr/ 86Sr determination, indicate that these Hualalai xenoliths are unrelated to mid-ocean ridge basalt. Similarity between the crystallization sequence of these xenoliths and the experimental crystallization sequence of a Hawaiian olivine tholeiite suggest that the parental magma of the xenoliths is Hualalai tholeiitic basalt. Xenoliths probably crystallized between about 4.5 and 9 kb. The 155°–230° C of cooling which took place over about 120 ka — the age of the youngest Hualalai tholeiitic basalt — yield maximum cooling rates of 1.3×10–3–1.91×10–3 °C/yr. Hualalai ultramafic xenoliths with exsolved pyroxenes crystallized from Hualalai tholeiitic basalt and accumulated in a magma reservoir located between 13 and 28 km below sealevel. We suspect that this reservoir occurs just below the base of the oceanic crust at about 19 km below sealevel.  相似文献   

14.
Mid-ocean ridge basalts (MORBs) from East Pacific Rise (EPR) 13°N are analysed for major and trace elements, both of which show a continuous evolving trend. Positive MgO-Al2O3 and negative MgO-Sc relationships manifest the cotectic crystallization of plagioclase and olivine, which exist with the presence of plagioclase and olivine phenocrysts and the absence of clinopyroxene phenocrysts. However, the fractionation of clinopyroxene is proven by the positive correlation of MgO and CaO. Thus, MORB samples are believed to show a "clinopyroxene paradox". The highest magnesium.bearing MORB sample E13-3B (MGO=9.52%) is modelled for isobaric crystallization with COMAGMAT at different pressures. Observed CaO/Al2O3 ratios can be derived from E13-3B only by fractional crystallization at pressure >4±1 kbar, which necessitates clinopyroxene crystallization and is not consistent with cotectic crystallization of olivine plus plagioclase in the magma chamber (at pressure~1 kbar). The initial compositions of the melt inclusions, which could represent potential parental magmas, are reconstructed by correcting for post-entrapment crystallization (PEC). The simulated crystallization of initial melt inclusions also produce observed CaO/Al2O3 ratios only at >4±1 kbar, in which clinopyroxene takes part in crystallization. It is suggested that MORB magmas have experienced clinopyroxene fractionation in the lower crust, in and below the Moho transition zone. The MORB magmas have experienced transition from clinopyroxene+plagioclase+olivine crystallization at >4±1 kbar to mainly olivine+plagioclase crystallization at <1 kbar, which contributes to the explanation of the "clinopyroxene paradox".  相似文献   

15.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

16.
The powerful eruption in the Akademii Nauk caldera on January 2, 1996, marked a new activity phase of Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo 82-72), plagioclase (An 92-73), and clinopyroxene (Mg#83-70) in basalts of the 1996 eruption. The data were utilized to estimate the composition of the parental melt and the physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesian, highly aluminous basalt (SiO2 = 50.2 wt %, MgO = 5.6 wt %, Al2O3 = 17 wt %) of the mildly potassic type (K2O = 0.56 wt %) and contained much dissolved volatile components (H2O = 2.8 wt %, S = 0.17 wt %, and Cl = 0.11 wt %). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at a pressure of approximately 1.5 kbar, proceeded within a narrow temperature range of 1040 ± 20°C, and continued until a near-surface pressure of approximately 100 bar was reached. The degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under a pressure of less than 1 kbar. Magma degassing in an open system resulted in the escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. The release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated at 1.7 × 106 t H2O, 1.4 × 105 t S, and 1.5 × 104 t Cl. The concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in the plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.  相似文献   

17.
Tertiary volcanism in the İkizce region at the western edge of the eastern Pontides paleo-magmatic arc is represented by basaltic and andesitic rocks associated with sediments deposited in a shallow basin environment. The basaltic rocks contain plagioclase (An58–80), olivine (Fo82–84), clinopyroxene (Wo44–48En35–42Fs7–17), hornblende (Mg# = 0.68–0.76) phenocrysts, and magnetite microcrysts, whereas the andesitic rocks include plagioclase (An25–61), clinopyroxene (Wo46–49En38–43Fs11–13), hornblende (Mg# = 0.48–0.81), biotite (Mg# = 0.48–0.60) phenocrysts, titanomagnetite, apatite, and zircon microcrysts.Geochemical data indicate magmatic evolution from tholeiitic-alkaline transitional to calc-alkaline characteristics with medium-K contents. The geochemical variation in the rocks can be explained by fractionation of common mineral phases such as clinopyroxene, olivine, hornblende, plagioclase, magnetite, and apatite. The trace elements’ distributions of the volcanic rocks show similarities to those of E-Type MORB, have a shape that is typical of rocks from subduction-related tectonic setting with enrichment in LILE and to a lesser extent in LREE, but depletion in HFSE. The rocks evolved from a parental magma derived from an enriched source formed by subduction induced metasomatism of basaltic rocks, the latter formed through clinopyroxene ± olivine controlled fractionation in a high level magma chamber. The andesitic rocks developed through hornblende ± plagioclase controlled fractionation in shallow level magma chamber(s).  相似文献   

18.
Mg-skarns enclosed in dunite cumulates of the Neo-Proterozoic Ioko-Dovyren intrusion (northern Baikal region, Russia) can be traced to silica-poor dolomitic host rock layers. The dominant minerals of the skarns are brucite (pseudomorph after periclase), forsterite and Cr-poor spinel. Rapid heating of quartz-poor dolomitic xenoliths led to the formation of minor olivine, followed by the breakdown of dolomite to calcite and periclase. Xenoliths were partially melted upon further heating resulting in a calcite melt. This low-density melt was quantitatively squeezed out, mixed with the surrounding mafic magma and left behind periclase and olivine. This caused the crystallization of new olivine with elevated CaO contents in zones above skarn-bearing horizons. Mixing of calcite melt with the surrounding mafic magma also resulted in the crystallization of Cats-rich clinopyroxene instead of plagioclase. The mineralogy of contaminated dunite cumulates is consistent with assimilation of approximately 4wt% CaO by the Ioko-Dovyren mafic magma.  相似文献   

19.
Compositional relations among natural glasses in basalts recovered by Legs 45 and 46 (DSDP) provide powerful constraints on their differentiation histories. Residual glass compositions in the moderately evolved aphyric and abundantly phyric basalts within each site demonstrate that none of the units is mutually related to any other or to a common parent by simple fractional crystallization. At Site 396, where clinopyroxene phenocrysts are absent, progressively more evolved liquids (lower Mg/ (Mg+Fe) and higher TiO2) are characterized by lower calcium-aluminum ratios, which can only be generated by clinopyroxene fractionation. This paradox is amplified by some melt inclusions in olivine phenocrysts that have higher CaO/Al2O3 and lower TiO2 than any residual glasses. The occurrences of these distinctive compositions are correlated with the highly magnesian character of the host olivines (Fo90–89), and the melts are interpreted as trapped primitive liquids, parental to the more fractionated derivatives.Melt inclusions intermediate in composition between the residual glasses and the most primitive olivine melt inclusions are present in the cores of some plagioclase phenocrysts that have had a history of resorption. On the basis of a petrographic and microprobe analysis of the zoning relations in these phenocrysts, the inclusions are inferred to be melts entrapped at the time of extensive corrosion of the host crystals.Interpreted in conjunction with other mineral and geochemical data, the compositional trends in the glasses indicate that magma mixing has played a major role in the genesis of the Leg 45 and 46 basalts. The reality of mixing is demonstrated by extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions. The chemical imprint of clinopyroxene fractionation despite the absence of clinopyroxene phenocrysts is believed to be accomplished by plating of gabbro on to the upper walls of the subvolcanic magma chamber as it evolves between mixing events. Repeated influxes of primitive magma batches will move the resultant hybrids alway from clinopyroxene saturation and generate olivine-plagioclase cotectic magmas. This model provides a physical buffering mechanism that accounts for the volumetric dominance of moderately evolved basalts among ocean floor tholeiites. Major and trace element models based on the combination of mixing and fractional crystallization also explain heretofore enigmatic geochemical characteristics of MORB.Lunar and Planetary Institute Contribution no. 326After August 1, 1978: Department of Geological Sciences, Southern Methodist University, Dallas, TX 75275, USAThe Lunar and Planetary Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration  相似文献   

20.
塔里木巴楚小海子正长岩杂岩体的岩石成因探讨   总被引:6,自引:4,他引:2  
位荀  徐义刚 《岩石学报》2011,27(10):2984-3004
巴楚小海子正长岩杂岩体是二叠纪塔里木大火成岩省的重要组成部分.SIMS锆石U-Pb定年显示其形成于279.7±2.0Ma,与本区辉绿岩脉和石英正长斑岩岩脉近于同时侵位.根据矿物学特征,小海子正长岩体可分为铁橄榄石正长岩和角闪正长岩两类.前者主要由碱性长石、铁橄榄石、单斜辉石、角闪石和少量石英、斜长石组成,后者主要由碱性长石、角闪石、黑云母和少量的石英、斜长石组成.小海子正长岩体为铁质、碱性系列,轻稀土相对富集,重稀土亏损,具有明显的Eu正异常,无Nb、Ta负异常,相对低的(87Sr/86Sr);(0.7033 ~0.7038)和正的εNd(t)值(+3.1~+3.8),暗示它们来自亏损的地幔源区,没有地壳物质的加入.主微量和同位素地球化学分析,暗示巴楚小海子正长岩的母岩浆为碱性的幔源玄武质岩浆经橄榄石、单斜辉石分离结晶后的残余熔体,并且含有堆晶的碱性长石.这种含有碱性长石堆晶的熔体,在相对还原的条件下结晶,形成铁橄榄石正长岩;在相对氧化的条件下结晶,并经过不同程度斜长石的分离结晶形成角闪正长岩.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号