首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anorthite is an important constituent mineral in basaltic achondrites from small celestial bodies. Its high‐pressure phase transformation in shocked meteorites has not been systematically studied. In this study, we report the diverse phase transformation behaviors of anorthite in a shocked eucrite Northwest Africa (NWA) 2650, which also contains coesite, stishovite, vacancy‐rich clinopyroxene, super‐silicic garnet, and reidite. Anorthite in NWA 2650 has transformed into anorthite glass (anorthite glassy vein, maskelynite, and glass with a schlieren texture and vesicles), tissintite and dissociated into three‐phase assemblage grossular + kyanite + silica glass. Different occurrences of anorthite glass might have formed via the mechanism involving shear melting, solid‐state transformation, and postshock thermally melting, respectively. Tissintite could have crystallized from a high‐pressure plagioclase melt. The nucleation of tissintite might be facilitated by relict pyroxene fragments and the early formed vacancy‐rich clinopyroxene. The three‐phase assemblage grossular, kyanite, and silica glass should have formed from anorthitic melt at high‐pressure and high‐temperature conditions. The presence of maskelynite and reidite probably suggests a minimum peak shock pressure up to 20 GPa, while the other high‐pressure phases indicate that the shock pressure during the crystallization of shock melt veins might vary from >8 GPa to >2 GPa with a heterogeneous temperature distribution.  相似文献   

2.
Abstract— –Shock‐metamorphosed rock fragments have been found in the Australasian microtektite layer from the South China Sea. Previous X‐ray diffraction (XRD) studies indicate that the most abundant crystalline phases in the rock fragments are coesite, quartz, and a 10 Å phase (mica/clay?). In addition, the presence of numerous other phases was suggested by scanning electron microscopy (SEM) and energy‐dispersive X‐ray (EDX) analysis. In the present research, ten of the rock fragments, which had previously been studied using SEM/EDX, were studied by micro‐Raman spectroscopy. The presence of K‐feldspar, plagioclase, rutile, ilmenite, titanite, magnetite, calcite, and dolomite were confirmed. In addition, the high‐pressure TiO2 polymorph with an α‐PbO2 structure (i.e., TiO2II) was found in several rock fragments. Two grains previously thought to have been zircon, based on their compositions, were found to have Raman spectra that do not match the Raman spectra of zircon, reidite, or any of the possible decomposition products of zircon or their high‐pressure polymorphs. We speculate that the ZrSiO4 phase might be a previously unknown high‐pressure polymorph of zircon or one of its decomposition products (i.e., ZrO2 or SiO2). The presence of coesite and TiO2 II, and partial melting and vesiculation suggest that the rock fragments containing the unknown ZrSiO4 phase must have experienced shock pressures between 45 and 60 GPa. We conclude that micro‐Raman spectroscopy, in combination with XRD and SEM/EDX, is a powerful tool for the study of small, fine‐grained impact ejecta.  相似文献   

3.
Abstract— About 100 cobble-sized samples collected from the surface of the central polymict breccia formation of Haughton impact crater, Canada, have been studied microscopically and chemically. Breccia clasts derived from the 1700 m deep Precambian basement consist of 13 rock types which can be grouped into sillimanite- and garnet-bearing gneiss; alkali feldspar-rich aplitic or biotite-hornblende-bearing gneiss; biotite and hornblende gneiss; apatite-rich biotite and biotite-hornblende gneiss; calcitediopside gneiss; amphibolite; tonalitic orthogneiss; and basalts. The range of chemical compositions of these rocks is wide: e.g., SiO2 ranges from 40–85 wt.%; Al2O3 from 7–20 wt.%; CaO from 0.01–25 wt.%; or P2Os from <0.01–5 wt.%. Nearly all samples of crystalline rocks are shock metamorphosed up to about 60 GPa. Most conspicuous is the absence of whole-rock melts and the very rare occurrence of unshocked rocks. The 45 samples examined can be classified into the following shock stages: stage 0 (<5 GPa): 4.5%, stage Ia (10–20 GPa): 9.0%, stage Ib (20–35 GPa): 33%, stage II (35–45 GPa): 29%, stage III (45–55 GPa): 18%, stage III–IV (55–60 GPa): 6.5%. Among Paleozoic sedimentary rock clasts higher degrees of shock than within crystalline rocks were observed such as highly vesiculated, whole-rock melts of sandstones and shales. Within the northern and eastern sectors of the allochthonous breccia no distinct radial variation of the cobble-sized lithic clasts regarding abundance, rock type, and degree of shock was observed, with the exception that clasts of shock-melted sedimentary rocks and of highly shocked basement rocks (stage III–IV) are strongly concentrated near the center of the crater. Based on our field and laboratory investigations we conclude that vaporization and melting due to the Haughton impact affected the lower section of the sedimentary strata from about 900 to 1700 m depth (Eleanor River limestones and dolomites, Lower Ordovician and Cambrian limestones, dolomites, shales, and sandstones). The 60-GPa shock pressure isobar reached only the uppermost basement rocks so that whole rock melting of the crystalline rocks was not possible.  相似文献   

4.
Abstract— To ascertain the progressive stages of shock metamorphism of zircon, samples from three well‐studied impact craters were analyzed by optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy in thin section and grain separates. These samples are comprised of well‐preserved, rapidly quenched impactites from the Ries crater, Germany, strongly annealed impactites from the Popigai crater, Siberia, and altered, variably quenched impactites from the Chicxulub crater, Mexico. The natural samples were compared with samples of experimentally shock‐metamorphosed zircon. Below 20 GPa, zircon exhibits no distinct shock features. Above 20 GPa, optically resolvable planar microstructures occur together with the high‐pressure polymorph reidite, which was only retained in the Ries samples. Decomposition of zircon to ZrO2 only occurs in shock stage IV melt fragments that were rapidly quenched. This is not only a result of post‐shock temperatures in excess of ?1700 °C but could also be shock pressure‐induced, which is indicated by possible relics of a high‐pressure polymorph of ZrO2. However, ZrO2 was found to revert to zircon with a granular texture during devitrification of impact melts. Other granular textures represent recrystallized amorphous ZrSiO4 and reidite that reverted to zircon. This requires annealing temperatures >1100 °C. A systematic study of zircons from a continuous impactite sequence of the Chicxulub impact structure yields implications for the post‐shock temperature history of suevite‐like rocks until cooling below ?600 °C.  相似文献   

5.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

6.
Abstract– Dhofar 458 is a lunar meteorite consisting mainly of olivine‐plagioclase intergrowths, pyroxene‐plagioclase intergrowths, and plagioclase fragments. Pyroxene‐plagioclase globules are also common. In this study, we report the discovery of a polycrystalline zircon in this lunar meteorite. The polycrystalline zircon contains small vesicles and rounded baddeleyite grains at its margin. The polycrystalline and porous texture of the zircon indicates high‐pressure shock‐induced melting and degassing. Baddeleyite grains are derived from decomposition of zircon under high postshock temperature. The shock features in zircon indicates that the shock pressure in Dhofar 458 was greater than approximately 60 GPa and the postshock temperature greater than approximately 1700 °C. The polycrystalline and degassing texture and decomposition zircon also strongly indicates that Dhofar 458 is a clast‐rich impact melt rock. During this shock event, most components were melted and grains of mafic minerals are interstitial to lath‐like plagioclase grains. Large fragments of olivine and chromite also formed polycrystalline texture at margins and chemically reequilibrated with surrounding melts. We suggest that pyroxene‐plagioclase globules could be remains of melted target clasts, whereas vesicles may form during shock‐induced degassing of the rock. The U‐Pb isotopic data plot on a well‐defined discordant line, yielding the age of the zircon of 3434 ± 15 Ma (2σ). This age is interpreted as the time of the impact event that melted Dhofar 458 and caused decomposition and recrystallization of this zircon in Dhofar 458, which reset this zircon’s U‐Pb age.  相似文献   

7.
During impact events, zircons develop a wide range of shock metamorphic features that depend on the pressure and temperature conditions experienced by the zircon. These conditions vary with original distance from impact center and whether the zircon grains are incorporated into ejecta or remain within the target crust. We have employed the range of shock metamorphic features preserved in >4 Ga lunar zircons separated from Apollo 14 and 15 breccias and soils in order to gain insights into the impact shock histories of these areas of the Moon. We report microstructural characteristics of 31 zircons analyzed using electron beam methods including electron backscatter pattern (EBSP) and diffraction (EBSD). The major results of this survey are as follows. (1) The abundance of curviplanar features hosting secondary impact melt inclusions suggests that most of the zircons have experienced shock pressures between 3 and 20 GPa; (2) the scarcity of recrystallization or decomposition textures and the absence of the high‐pressure polymorph, reidite, suggests that few grains have been shocked to over 40 GPa or heated above 1000 °C in ejecta settings; (3) one grain exhibits narrow, arc‐shaped bands of twinned zircon, which map out as spherical shells, and represent a novel shock microstructure. Overall, most of the Apollo 14 and 15 zircons exhibit shock features similar to those of terrestrial zircon grains originating from continental crust below large (~200 km) impact craters (e.g., Vredefort impact basin), suggesting derivation from central uplifts or uplifted rims of large basins or craters on the Moon and not high‐temperature and ‐pressure ejecta deposits.  相似文献   

8.
This contribution addresses the role of chemical composition, pressure, temperature, and time during the shock transformation of plagioclase into diaplectic glass—i.e., maskelynite. Plagioclase of An50‐57 and An94 was recovered as almost fully isotropic maskelynite from room temperature shock experiments at 28 and 24 GPa. The refractive index (RI) decreased to values of a quenched mineral glass for An50‐57 plagioclase shocked to 45 GPa and shows a maximum in An94 plagioclase shocked to 41.5 GPa. The An94 plagioclase experiments can serve as shock thermobarometer for lunar highland rocks and howardite, eucrite, and diogenite meteorites. Shock experiments at 28, 32, 36, and 45 GPa and initial temperatures of 77 and 293 K on plagioclase (An50‐57) produced materials with identical optical and Raman spectroscopic properties. In the low temperature (<540 K) region, the formation of maskelynite is entirely controlled by shock pressure. The RI of maskelynite decreased in heating experiments of 5 min at temperatures of >770 K, thus, providing a conservative upper limit for the postshock temperature history of the rock. Although shock recovery experiments and static pressure experiments differ by nine orders of magnitude in typical time scale (microseconds versus hours), the amorphization of plagioclase occurs at similar pressure and temperature conditions with both methods. The experimental shock calibration of plagioclase can, together with other minerals, be used as shock thermobarometer for naturally shocked rocks.  相似文献   

9.
The Northwest Africa (NWA) 7475 meteorite is one of the several stones of paired regolith breccias from Mars based on petrography, oxygen isotope, mineral compositions, and bulk rock compositions. Its inventory of lithic clasts is dominated by vitrophyre impact melts that were emplaced while they were still molten. Other clast types include crystallized impact melt rocks, evolved plutonic rocks, possible basalts, contact metamorphosed rocks, and siltstones. Impact spherules and vitrophyre shards record airborne transport, and accreted dust rims were sintered on most clasts, presumably during residence in an ejecta plume. The clast assemblage records at least three impact events, one that formed an impact melt sheet on Mars ≤4.4 Ga ago, a second that assembled NWA 7475 from impactites associated with the impact melt sheet at 1.7–1.4 Ga, and a third that launched NWA 7475 from Mars ~5 Ma ago. Mildly shocked pyroxene and plagioclase constrain shock metamorphic conditions during launch to >5 and <15 GPa. The mild postshock‐heating that resulted from these shock pressures would have been insufficient to sterilize this water‐bearing lithology during launch. Magnetite, maghemite, and pyrite are likely products of secondary alteration on Mars. Textural relationships suggest that calcium‐carbonate and goethite are probably of terrestrial origin, yet trace element chemistry indicates relatively low terrestrial alteration. Comparison of Mars Odyssey gamma‐ray spectrometer data with the Fe and Th abundances of NWA 7475 points to a provenance in the ancient southern highlands of Mars. Gratteri crater, with an age of ~5 Ma and an apparent diameter of 6.9 km, marks one possible launch site of NWA 7475.  相似文献   

10.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   

11.
Maohokite, a post‐spinel polymorph of MgFe2O4, was found in shocked gneiss from the Xiuyan crater in China. Maohokite in shocked gneiss coexists with diamond, reidite, TiO2‐II, as well as diaplectic glasses of quartz and feldspar. Maohokite occurs as nano‐sized crystallites. The empirical formula is (Mg0.62Fe0.35Mn0.03)2+Fe3+2O4. In situ synchrotron X‐ray microdiffraction established maohokite to be orthorhombic with the CaFe2O4‐type structure. The cell parameters are = 8.907 (1) Å, = 9.937(8) Å, = 2.981(1) Å; V = 263.8 (3) Å3; space group Pnma. The calculated density of maohokite is 5.33 g cm?3. Maohokite was formed from subsolidus decomposition of ankerite Ca(Fe2+,Mg)(CO3)2 via a self‐oxidation‐reduction reaction at impact pressure and temperature of 25–45 GPa and 800–900 °C. The formation of maohokite provides a unique example for decomposition of Fe‐Mg carbonate under shock‐induced high pressure and high temperature. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2017‐047). The mineral was named maohokite after Hokwang Mao, a staff scientist at the Geophysical Laboratory, Carnegie Institution of Washington, for his great contribution to high pressure research.  相似文献   

12.
This study demonstrates a relationship between changes of magnetic susceptibility and microstructure developing in minerals of a magnetite‐bearing ore, experimentally shocked to pressures of 5, 10, 20, and 30 GPa. Shock‐induced effects on magnetic properties were quantified by bulk magnetic susceptibility measurements while shock‐induced microstructures were studied by high‐resolution scanning electron microscopy. Microstructural changes were compared between magnetite, quartz, amphibole, and biotite grains. In the 5 GPa sample, a sharp drop of magnetic susceptibility correlates with distinct fragmentation as well as with formation of shear bands and twins in magnetite. At 10 GPa, shear bands and twins in magnetite are accompanied by droplet‐shaped nanograins. In this shock pressure regime, quartz and amphibole still show intensive grain fragmentation. Twins in quartz and foam‐shaped, highly porous amphibole are formed at 20 and 30 GPa. The formation of porous minerals suggests that shock heating of these mineral grains resulted in localized temperature spikes. The identified shock‐induced features in magnetite strongly advise that variations in the bulk magnetic susceptibility result from cooperative grain fragmentation, plastic deformation and/or localized amorphization, and probably postshock annealing. In particular, the increasing shock heating at high pressures is assumed to be responsible for a partial defect annealing which we suggest to be responsible for the almost constant values of magnetic susceptibility above 10 GPa.  相似文献   

13.
A silicious impact melt rock from polymict impact breccia of the northern part of the alkali granite core of the Araguainha impact structure, central Brazil, has been investigated. The melt rock is thought to represent a large mass of impact‐generated melt in suevite. In particular, a diverse population of zircon grains, with different impact‐induced microstructures, has been analyzed for U‐Pb isotopic systematics. Backscattered electron and cathodoluminescence images reveal heterogeneous intragrain domains with vesicular, granular, vesicular plus granular, and vesicular plus (presumably) baddeleyite textures, among others. The small likely baddeleyite inclusions are not only preferentially located along grain margins but also occur locally within grain interiors. LA‐ICP‐MS U‐Pb data from different domains yield lower intercept ages of 220, 240, and 260 Ma, a result difficult to reconcile with the previous “best age” estimate for the impact event at 254.7 ± 2.7 Ma. SIMS U‐Pb data, too, show a relatively large range of ages from 245 to 262 Ma. A subset of granular grains that yielded concordant SIMS ages were analyzed for crystallographic orientation by EBSD. Orientation mapping shows that this population consists of approximately micrometer‐sized neoblasts that preserve systematic orientation evidence for the former presence of the high‐pressure polymorph reidite. In one partially granular grain (#36), the neoblasts occur in linear arrays that likely represent former reidite lamellae. Such grains are referred to as FRIGN zircon. The best estimate for the age of the Araguainha impact event from our data set from a previously not analyzed type of impact melt rock is based on concordant SIMS data from FRIGN zircon grains. This age is 251.5 ± 2.9 Ma (2σ, MSWD = 0.45, p = 0.50, n = 4 analyses on three grains), indistinguishable from previous estimates based on zircon and monazite from other impact melt lithologies at Araguainha. Our work provides a new example of how FRIGN zircon can be combined with in situ U‐Pb geochronology to extract an accurate age for an impact event.  相似文献   

14.
Coesite is one of the most common and abundant high‐pressure phases occurring in impactites. The mechanism of formation of coesite and its postshock evolution is revisited in this paper based on Raman microspectroscopy, and scanning and transmission electron microscopy of a coesite‐bearing suevite from the Ries impact structure. Our data indicate that coesite forms through a single process, i.e., by crystallization from high‐pressure silica melt, and that its formation is related to fluid inclusions in precursor quartz. During the postshock phase, coesite aggregates are partially modified by annealing and interactions with fluids. In an early stage of the postshock evolution, coesite is back‐transformed to quartz and the surrounding diaplectic glass devitrifies into β‐cristobalite, which transforms into α‐cristobalite and then into microcrystalline quartz during subsequent stages of the postshock evolution. Altogether these postshock modifications result in a significant volume loss and extensional fracturing. During a late postshock stage, the fractures are filled with clay minerals due to circulation of hydrothermal fluids.  相似文献   

15.
Shock‐induced features are abundantly observed in meteorites. Especially, shock veins, including high‐pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high‐pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine‐grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high‐pressure phase in enstatite chondrites. Other high‐pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high‐pressure and temperature condition at about 3–10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from ~700 to ~1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high‐pressure polymorphs. Heavy shock events commonly took place in the solar system.  相似文献   

16.
Abstract— Shock‐recovery experiments were carried out on samples of the H6 chondrite Kernouvé at shock pressures of 10, 15, 20, 25, 30, 35, 45, and 60 GPa and preheating temperatures of 293 K (low‐temperature experiments) and 920 K (high‐temperature experiments). Using a calculated equation of state of Kernouvé, pressure‐pulse durations of 0.3 to 1.2 μs were estimated. The shocked samples were investigated by optical microscopy to calibrate the various shock effects in olivine, orthopyroxene, oligoclase, and troilite. The following pressure calibration is proposed for silicates: (1) undulatory extinction of olivine <GPa; (2) weak mosaicism of olivine from 10–15 GPa to 20–25 GPa; (3) onset of strong mosaicism of olivine at 20–25 GPa; (4) transformation of oligoclase to diaplectic glass completed at 25–30 GPa (low‐temperature experiments) and at 20–25 GPa (high‐temperature experiments); (5) onset of weak mosaicism in orthopyroxene at 30–35 GPa (low‐temperature experiments) and at 25–30 GPa (high‐temperature experiments); and (6) recrystallization or melting of olivine starting at 45–60 GPa (low‐temperature experiments) and at 35–45 GPa (high‐temperature experiments), and completed above 45–60 GPa in the high‐temperature experiments. Troilite displays distinct differences between the samples shocked at low and high temperatures. In the low‐temperature experiments, the following effects can be observed in troilite: (1) undulatory extinction up to 25 GPa, (2) twinning up to 45 GPa, (3) partial recrystallization from 30 to 60 GPa, and (4) complete recrystallization >35 GPa; whereas in the high‐temperature experiments, troilite shows (1) complete recrystallization from 10 up to 45 GPa and (2) melting and crystallization above 45 GPa. Localized shock‐induced melting is observed in samples shocked to pressures >15 GPa in the high‐temperature experiments and >30 GPa for the low‐temperature experiments in the form of FeNi metal and troilite melt injections and intergrowths and as pockets and veins of whole‐rock melt. Obviously, the onset and abundance of shock‐induced localized melting strongly depends on the initial temperature of the sample.  相似文献   

17.
Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of ~30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast–matrix or shock vein margin–matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault (~1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid–liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure–temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz–coesite–stishovite–kyanite–biotite–alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change–initiated volume reduction, and melt cavitation.  相似文献   

18.
Chromites from Middle Ordovician fossil L chondrites and from matrix and shock‐melt veins in Catherwood, Tenham, and Coorara L chondrites were studied using Raman spectroscopy and TEM. Raman spectra of chromites from fossil L chondrites showed similarities with chromites from matrix and shock‐melt veins in the studied L chondrite falls and finds. Chromites from shock‐melt veins of L chondrites show polycrystallinity, while the chromite grains in fossil L chondrites are single crystals. In addition, chromites from shock‐melt veins in the studied L chondrites have high densities of planar fractures within the subgrains and many subgrains show intergrowths of chromite and xieite. Matrix chromite of Tenham has similar dislocation densities and planar fractures as a chromite from the fossil meteorite Golvsten 001 and higher dislocation densities than in chromite from the fossil meteorite Sextummen 003. Using this observation and knowing that the matrix of Tenham experienced 20–22 GPa and <1000° C, an upper limit for the P,T conditions of chromite from Golvsten 001 and Sextummen 003 can be estimated to be 20–22 GPa and 1000° C (shock stage S3–S6) and 20 GPa and 1000° C (S3–S5), respectively, and we conclude that the studied fossil meteorite chromites are from matrix.  相似文献   

19.
The current shock classification scheme of meteorites assigns shock levels of S1 (unshocked) to S6 (very strongly shocked) using shock effects in rock‐forming minerals such as olivine and plagioclase. The S6 stage (55–90 GPa; 850–1750 °C) relies solely on localized effects in or near melt zones, the recrystallization of olivine, or the presence of mafic high‐pressure phases such as ringwoodite. However, high whole rock temperatures and the presence of high‐pressure phases that are unstable at those temperatures and pressures of zero GPa (e.g., ringwoodite) are two criteria that exclude each other. Each type of high‐pressure phase provides a minimum shock pressure during elevated pressure conditions to allow the formation of this phase, and a maximum temperature of the whole rock after decompression to allow the preservation of this phase. Rocks classified as S6 are characterized not by the presence but by the absence of those thermally unstable high‐pressure phases. High‐pressure phases in or attached to shock melt zones form mainly during shock pressure decline. This is because shocked rocks (<60 GPa) experience a shock wave with a broad isobaric pressure plateau only during low velocity (<4.5 km s?1) impacts, which rarely occur on small planetary bodies; e.g., the Moon and asteroids. The mineralogy of shock melt zones provides information on the shape and temporal duration of the shock wave but no information on the general maximum shock pressure in the whole rock.  相似文献   

20.
All Martian meteorites have experienced shock metamorphism to some degree. We quantitatively determined shock‐related strain in olivine crystals to measure shock level and peak shock pressure experienced by five Martian meteorites. Two independent methods employing nondestructive in situ micro X‐ray diffraction (μXRD) are applied, i.e., (1) the lattice strain method, in which the lattice strain value (ε) for each olivine grain is derived from a Williamson–Hall plot using its diffraction pattern (peak width variation with diffraction angle) with reference to a best fit calibration curve of ε values obtained from experimentally shocked olivine grains; (2) the strain‐related mosaicity method, allowing shock stage to be estimated by measuring the streaking along the Debye rings of olivine grain diffraction spots to define their strain‐related mosaic spread, which can then be compared with olivine mosaicity in ordinary chondrites of known shock stage. In this study, both the calculated peak shock pressures and the estimated shock stages for Dar al Gani 476 (45.6 ± 0.6 GPa), Sayh al Uhaymir 005/8 (46.1 ± 2.2 GPa), and Nakhla (18.0 ± 0.6 GPa) compare well with literature values. Formal shock assessments for North West Africa 1068/1110 (53.9 ± 2.1 GPa) and North West Africa 6234 (44.6 ± 3.1 GPa) have not been reported within the literature; however, their calculated peak shock pressures fall within the range of peak shock pressures defining their estimated shock stages. The availability of nondestructive and quantitative μXRD methods to determine shock stage and peak shock pressure from olivine crystals provides a key tool for shock metamorphism analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号