首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Observations of sodium D-line emission from Io and the magnetosphere of Jupiter are reported. A disk-shaped cloud of sodium is found to exist in the Jovian magnetosphere with an inner edge at about 4R and an outer edge at about 10R . The gravitational scale height above the equatorial plane is a few Jovian radii. The data are interpreted in terms of a sputtering model, in which the sodium required to maintain the cloud is sputtered off the surface of Io by trapped energetic radiation-belt protons. Conditions on the atmospheric density are obtained. The Keplerian orbits attainable by such escaping sputtered atoms can provide the observed spatial distribution. The required 500-keV proton flux required to provide the 1–10 keV protons which will sputter the sodium at the surface of Io is consistent with the limiting trapped flux determined by ion-cyclotron turbulence.Publication No. 1410, Institute of Geophysics and Planetary Physics, University of California, Los Angeles 90024, Cal., U.S.A.  相似文献   

2.
3.
The passage of Ulysses through Jupiter's magnetosphere presents a new opportunity to investigate the contribution to the Jovian magnetosphere of ions of atmospheric origin. A determination of the magnetospheric H+/He2+ flux ratio allows an estimate of the relative abundance of ionospheric material in the Jovian magnetosphere. We find that the H+/He2+ flux ratio, measured in the energy/charge range between 0.65 and 60 keV/e, steadily increases from a solar wind level of 25 at the magnetopause to a value of 700 at the point of closest approach, and then steadily decreases whilst approaching the magnetopause on the outbound path. We conclude from this that: (1) there is a significant solar wind component throughout the outer and middle magnetosphere; and (2) a significant fraction of the protons in the middle magnetosphere are of nonsolar origin.  相似文献   

4.
We show that if Io-injected plasma is lost via a planetary wind a sun-fixed Birkeland current system may result. This is due to the fact that a current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn-to-dusk electric field which at the orbit of Io is estimated to have a strength of a few mV m?1. Independent estimates derived from the local time asymmetry of the torus u.v. emission indicate a field of 1.5mVm?1.  相似文献   

5.
6.
The modulations of the non-Io-related radio emissions in hectometric and decametric wave frequencies are examined, and compared with the observed variation of the MeV electron fluxes in the morning sector of the Jovian magnetosphere. It is suggested that these radio emissions are controlled by the behaviour of these electrons in this sector.  相似文献   

7.
《Planetary and Space Science》1999,47(3-4):521-527
It is widely recognized that Io, the innermost of the Galilean satellites, releases matter into the rapidly-rotating Jovian magnetosphere at rates that may be as high as a ton per second. Following ionization, this iogenic, heavy-ion plasma dominates the dynamics of the Jovian magnetosphere. On average this plasma must be lost at a rate that balances its generation but we do not know whether this process is steady or intermittent. Measurements by the Galileo magnetometer suggest that this process is unsteady. By estimating the magnetic and particle stresses from these observations, we further can derive a mass density profile that is consistent with earlier measurements of the current sheet density and that is consistent with estimates of the radial transport of mass in the middle Jovian magnetosphere.  相似文献   

8.
The magnetosphere of Jupiter has been the subject of extensive research in recent years due to its detectable radio emissions. Observations in the decimetric radio band have been particular helpful in ascertaining the general shape of the Jovian magnetic field, which is currently believed to be a dipole with minor perturbations. Although there is no direct evidence for thermal plasma in the magnetosphere of Jupiter, theoretical considerations about the physical processes that must occur in the ionosphere and magnetosphere surrounding Jupiter have lead to estimates of the thermal plasma distribution. These models of the Jovian magnetic field and thermal plasma distribution, specify the characteristic plasma and cyclotron frequencies in the magnetosplasma and thereby provide a basis for estimating thelocal electromagnetic and hydromagnetic noise around Jupiter. Spatial analogs of the well-known Clemmow-Mullaly-Allis (CMA) diagrams have been constructed to identify the loci of electron and ion resonances and cutoffs for the different field and plasma models. Regions of reflection, mode coupling, and probable amplification are readily identified. The corresponding radio noise properties may be estimated qualitatively on the basis of these various electromagnetic and hydromagnetic wave mode regions. Frequency bands and regions of intense natural noise may be estimated. On the basis of the models considered, the radio noise properties around Jupiter are quite different from those encountered in the magnetosphere around the Earth. Wave particle interactions are largely confined to the immediate vicinity of the zenographic equatorial plane and guided propagation from one hemisphere to the other apparently does not occur, except for hydromagnetic modes of propagation. The characteristics of these local signals are indicative of the physical processes occurring in the Jovian magnetosphere. Thus, as a remote sensing tool, their observation will be a vital asset in the exploration of Jupiter.  相似文献   

9.
The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.  相似文献   

10.
Growth rates for both the RH- and LH-modes of an EM wave propagating along a magnetic field through an isotropic loss-cone plasma have been obtained. It is found that growing modes can exist, and are found to depend critically on the mirror ratioR, and the specific details of the distribution function of the energetic component. To study the energetic-particle distribution observed at low energies by satellites within the magnetosphere, an isotropic double-humped loss-cone velocity distribution is then studied with a view to determining whether the secondary hump can introduce an instability not present for monotonic distribution. It is found that such a distribution can be unstable in a mirror geometry if the energetic component is sufficiently monoenergetic. Within the magnetosphere, nearly monoenergetic fluxes are observed, peaking in the energy range 1–10 keV, depending on the McIlwain parameterL. It is possible that the initial injection of monoenergetic particles may have been much more sharply peaked than the one presently observed, and, as a result of wave-particle interactions, subsequently relaxed to the presently observed distribution. It is seen here that the EM waves within the magnetosphere can contribute to the relaxation of such an initial injection.  相似文献   

11.
The nature of the damping or instability has been investigated for the “ordinary” and “extraordinary” electromagnetic wave, propagating almost perpendicular to a magnetic line of force in the magnetosphere, for a plasma whose particle distribution function exhibits a temperature anisotropy and a loss-cone structure.  相似文献   

12.
It is suggested that the periodic modulation of Mev electron fluxes observed by Pioneer 10 in its outbound orbit was due to crossing the magnetically neutral sheet in the Jovian outer magnetosphere. It is pointed out that these electrons are continually generated in this sheet formed in the outer magnetosphere beyond about 20 Jupiter radii from the planet.  相似文献   

13.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   

14.
Pulsar radio emission is modelled as a sum of two completely polarized non-orthogonal modes with the randomly varying Stokes parameters and intensity ratio. The modes are the result of polarization evolution of the original natural waves in the hot, magnetized, weakly inhomogeneous plasma of the pulsar magnetosphere. In the course of the wavemode coupling, the linearly polarized natural waves acquire purely orthogonal elliptical polarizations. Further on, as the waves pass through the cyclotron resonance, they become non-orthogonal. The pulse-to-pulse fluctuations of the final polarization characteristics and the intensity ratio of the modes are attributed to the temporal fluctuations in the plasma flow.
The model suggested allows one to reproduce the basic features of the one-dimensional distributions of the individual-pulse polarization characteristics. Besides that, the propagation origin of the pulsar polarization implies a certain correlation between the mode ellipticity and position angle. On a qualitative level, for different sets of parameters, the expected correlations appear compatible with the observed ones. Further theoretical studies are necessary to establish the quantitative correspondence of the model to the observational results and to develop a technique of diagnostics of the pulsar plasma on this basis.  相似文献   

15.
Assuming that the spin and magnetic axis of Jupiter are strictly parallel and that the grain charge remains constant we have derived two integrals of the 3D equations of motion of charged dust grains moving within the co-rotating regions of the Jovian magnetosphere taking into account both planetary gravitation and magnetospheric rotation. We then apply this model to study the fate of fine dust injected into the Jovian magnetosphere as a result of the tidal disruption of comet Shoemaker-Levy 9 during its first encounter with Jupiter in July 1992. This analysis, which uses the integrals of the equation of motion rather than the equation of motion itself as was done by Horanyi (1994), does not allow us to calculate the orbits or the orbital evolution of the grains. But it does allow us to construct the spatial regions to which the grains are confined, at least initially before evolutionary effects take over. We have chosen three points along the path of the disintegrating comet for the injection of dust and used two values for the uncertain floating potential of the dust in the inner Jovian magnetosphere. Grains can have three different fates, depending on their size, their acquired potential and their point of injection. While the smallest grains are quickly lost by collision with the planet at high latitudes independent of the sign of their charge, those in an intermediate but narrow size range, injected near the equatorial plane can be trapped in a region close to it, this being true for both positive and negative grains. While somewhat larger positive grains may be initially ejected outward by the co-rotational electric force, similar negative grains, pulled inward by this force collide with the planet at low latitudes. In all cases the largest grains, which are dominated by planetary gravity, initially escape from the inner magnetosphere by following in the path of the comet.Using a detailed time dependent numerical calculation of the jovicentric orbits of the charged dust debris of the disintegrating comet, that allows for variation in the grain potential, while also allowing for perturbations of the grain orbits due to solar radiation pressure and solar gravity Horanyi (1994) found that grains in the size range (1.5m <a < 2.5m) which initially make large excursions from the planet, will eventually form a ring in the radial range 4.5R J <r < 6R J . Our present analytical calculation cannot make such a prediction about the evolutionary fate of the dust debris. It can, however, estimate the size of the grains that are initially confined to regions near the points of injection, before evolutionary effects become important.  相似文献   

16.
Making use of currently available theory of wave absorption, an attempt has been made to estimate the refractive indices and absorption coefficients for different wave frequencies during day and night times in the Jovian ionosphere. The results obtained have striking similarity with the corresponding results in the case of the Earth's ionosphere. It is concluded that VLF signals can be observed more easily during night times.  相似文献   

17.
The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto.Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes — the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System.Based on a paper presented at the 1985 Royal Astronomical Society of New Zealand Conference, Hamilton, New Zealand.  相似文献   

18.
It is shown that Birkeland current and vorticity in the magnetosphere are intimately related, suggesting the importance of taking explicit account of vorticity, particularly velocity shear, when considering magnetospheric motions. An equation of motion for the magnetosphere coupled to the ionosphere is derived. It is suggested that experience with MHD fluids generally might fruitfully be brought to bear on certain problems in the magnetosphere to answer the question, not ‘why a sheet of Birkeland current,’ but rather ‘why a localised velocity shear.’  相似文献   

19.
The center-of-disk reflectivity of Jupiter in the wavelength range from 1450 to 3150A?has been computed from 30 low-dispersion IUE spectra taken during solar maximum in 1978–1980. A vertically inhomogeneous radiative transfer program is used to compute model reflectivities of various stratospheric compositions for comparison. Ammonia and acetylene are well determined because they show narrow absorption bands in the ultraviolet. Above 1800A?, these two gases provide a good fit to the data, but not below. At shorter wavelengths the fit would be much improved by a small amount (5–15 ppb) of propadiene/allene (C3H4). Voyager IRIS spectra show that the IR bands of allene are not strong enough to be detected in such a small amount. Additional absorption around 1600A?can be reproduced best with the presence of cyclopropane (C3H6, <15ppb), although other absorbers (e.g., hydrocarbon molecules with more than three carbon atoms, oxygen- or nitrogen-containing molecules, or a high-attitude haze) could also explain the spectrum in this region. The data are too noisy to detect possible CO Cameron band absorption near 2000A?.  相似文献   

20.
Measurements of the position of Jupiter's radio centroid at 11 cm were made using the Parkes telescope. They indicate that any systematic displacement of the Jovian magnetic dipole along the rotation axis is to the north of the center of the planet, contrary to a model proposed by Warwick. Any offset of the dipole normal to the rotation axis does not exceed 0.1 of a planetary radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号