首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We combined high‐resolution and space‐resolved elemental distribution with investigations of magnetic minerals across Fe,Ni‐alloy and troilite interfaces for two nonmagmatic (Morasko and Mundrabilla) IAB group iron meteorites and an octahedrite found in 1993 in Coahuila/Mexico (Coahuila II) preliminarily classified on Ir and Au content as IIAB group. The aim of this study was to elucidate the crystallization and thermal history using gradients of the siderophile elements Ni, Co, Ge, and Ga and the chalcophile elements Cr, Cu, and Se with a focus on magnetic minerals. The Morasko and Coahuila II meteorite show a several mm‐thick carbon‐ and phosphorous‐rich transition zone between Fe,Ni‐alloy and troilite, which is characterized by magnetic cohenite and nonmagnetic or magnetic schreibersite. At Morasko, these phases have a characteristic trace element composition with Mo enriched in cohenite. In both Morasko and Coahuila II, Ni is enriched in schreibersite. The minerals have crystallized from immiscible melts, either by fractional crystallization and C‐ and P‐enrichment in the melt, or by partial melting at temperatures slightly above the eutectic point. During crystallization of Mundrabilla, the field of immiscibility was not reached. Independent of meteorite group and cooling history, the magnetic mineralogy (daubreelite, cohenite and/or schreibersite, magnetite) is very similar to the troilite (and transition zone) for all three investigated iron meteorites. If these minerals can be separated from the metal, they might provide important information about the early solar system magnetic field. Magnetite is interpreted as a partial melting or a terrestrial weathering product of the Fe,Ni‐alloy under oxidizing conditions.  相似文献   

2.
Abstract— We have carried out noble gas measurements on graphite from a large graphite‐metal inclusion in Canyon Diablo. The Ne data of the low‐temperature fractions lie on the mixing line between air and the spallogenic component, but those of high temperatures seem to lie on the mixing line between Ne‐HL and the spallogenic component. The Ar isotope data indicate the presence of Q in addition to air, spallogenic component and Ar‐HL. As the elemental concentration of Ne in Q is low, we could not detect the Ne‐Q from the Ne data. On the other hand, we could not observe Xe‐HL in our Xe data. As the Xe concentration and the Xe/Ne ratio in Q is much higher than that in the HL component, it is likely that only the contribution of Q is observed in the Xe data. Xenon isotopic data can be explained as a mixture of Q, air, and “El Taco Xe.” The Canyon Diablo graphite contains both HL and Q, very much like carbonaceous chondrites, retaining the signatures of various primordial noble gas components. This indicates that the graphite was formed in a primitive nebular environment and was not heated to high, igneous temperatures. Furthermore, a large excess of 129Xe was observed, which indicates that the graphite was formed at a very early stage of the solar system when 129I was still present. The HL/Q ratios in the graphite in Canyon Diablo are lower than those in carbonaceous chondrites, indicating that some thermal metamorphism occurred on the former. We estimated the temperature of the thermal metamorphism to about 500–600 °C from the difference of thermal retentivities of HL and Q. It is also noted that “El Taco Xe” is commonly observed in many IAB iron meteorites, but its presence in carbonaceous chondrites has not yet been established.  相似文献   

3.
4.
Abstract— We report neutron activation analyses, including radiochemical determination of trace siderophile elements (Au, Ge, Ir, Ni, Os and Re), for three SNC/martian meteorites, and Os and Re results for numerous eucrites. Ratios such as Ga/Al in the SNC orthopyroxenite ALH84001 confirm its martian affinity—its many distinctive characteristics, most notably its near-primordial age, notwithstanding. To the list of ALH84001's idiosyncrasies can now be added extraordinarily low concentrations of Au, Ni and, especially, Re (17 pg/g), for a martian meteorite. We consider several possible origins for the anomalously low Re content in ALH84001, including metasomatism or alteration. The pyroxene-cumulate nature of this rock probably does not account for its low Re content. Other SNC meteorites are also cumulates. An examination of Re-Nd variations among terrestrial basalts and komatiites suggests that Re is compatible with mantle minerals in general and only incompatible with olivine (however, olivine dominates the mantle residuum, especially during komatiite genesis). Our preferred model is that the ALH84001 parent melt formed in a mantle source region that was far more Re-depleted, and/or at a substantially lower oxygen fugacity, than the sources of the young SNC meteorites. Such a contrast is consistent with models that replenish siderophile elements in planetary mantles by gradual admixture of late-accreting matter and similarly derive most planetary water (which serves as an oxidant) very late in accretion. According to this model, ALH84001 formed before the siderophile-rich matter and water had been mixed well into the martian interior. Possibly the martian mantle never became generally as Re-rich and/or oxidized as the source region(s) of the younger SNCs.  相似文献   

5.
Abstract— On January 15, 2006, Stardust, a man‐made space capsule, plummeted to Earth for a soft landing after spending seven years in space. Since the expected initial speed of the body was about 12.9 km/s, a four‐element ground‐based infrasound array was deployed to Wendover, Nevada, USA, to measure the hypersonic booms from the re‐entry. At a distance of ~33 km from the nominal trajectory, we easily recorded the weak acoustic arrivals and their continued rumbling after the main hypersonic boom arrival. In this paper, we report on subsequent analyses of these data, including an assessment of the expected entry characteristics (dynamics, energetics, ablation and panchromatic luminosity, etc.) on the basis of a bolide/meteor/fireball entry model that was specifically adapted for modeling a re‐entering man‐made object. Throughout the infrasonic data analyses, we compared our results for Stardust to those previously obtained for Genesis. From the associated entry parameters, we were also able to compute the kinetic energy density conservation properties for the propagating line source blast wave and compared the inviscid theoretical predictions against observed ground‐based infrasound amplitude and wave period data as a function of range. Finally, we made a top‐down bottom‐up assessment of the line source wave normals propagating downward into the complex temperature/sound speed and horizontal wind speed environment during January 15, 2006. This assessment proved to be generally consistent with the signal processing analysis and with the observed time delay between the known Stardust entry and the time of observations of infrasound signals, and so forth.  相似文献   

6.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

7.
Abstract— Here we report on the stratigraphic distribution and chemical composition of Ni‐rich spinel, a specific mineral tracer of meteorite impacts, in the Fuente Caldera section in Spain. A major peak in spinel abundance is observed in a biostratigraphic interval defined by the last occurrence of the planktic foraminifera Porticulasphaera semiinvoluta and the first occurrence of the planktic foraminifera Turborotalia cunialensis. Two other peaks of lower abundances are observed higher up in the same biostratigraphic interval, but geochemical considerations suggest that they likely originate from redeposition by turbiditic currents. Biostratigraphic correlations with the global stratotype section and point for the Eocene/Oligocene boundary of Massignano in Italy give an age of 35.4 ± 0.2 Ma (1s?) for the major peak. This age is indistinguishable from the age of the impact horizon at Massignano (35.5 ± 0.2 Ma) and within the age uncertainties for the Popigai (35.7 ± 0.2 Ma) and Chesapeake Bay (35.5 ± 0.5 Ma) craters. The Fuente Caldera spinel, as the Massignano spinel, is assumed to be a relic mineral of microkrystites, which are believed to derive from a unique source related to the Popigai impact crater. The morphologies and Cr compositions of the Fuente Caldera and Massignano spinel crystals are markedly different, however: the Fuente Caldera spinel occurs mostly as octahedral and skeletal crystals with 85% of the grains belonging to the Cr‐rich magnetite series and 15% to the Fe‐rich chromite series, whereas the Massignano spinel occurs mostly as dendritic crystals with 90% of the grains belonging to the Cr‐poor magnetite series. It is unlikely that these differences are the result of post‐depositional alteration processes because the compositions of the crystals, as well as their morphologies, are in general very similar to those reported for primary spinel crystals, i.e., spinel crystals present in meteorite fusion crust or synthetized from meteoritic material. In addition, spinel crystals have quite homogeneous compositions except for a few grains (<10%) showing Cr zonations, but these are assigned to primary crystallization processes. One possible explanation that is consistent with a single impact event producing spatial variations in spinel compositions and morphologies is that microkrystites are locally generated by the ablation in the atmosphere of impact debris. An alternative explanation is that Fuente Caldera and Massignano microkrystites derive from two closely spaced impact events, which however requires another, so‐far unknown source crater for microkrystites.  相似文献   

8.
Abstract– The Grimsby meteorite (H4–6) fell on September 25, 2009. As of mid‐2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all‐sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all‐sky video records, the initial entry velocity was 20.91 ± 0.19 km s?1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20–50 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.  相似文献   

9.
10.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

11.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

12.
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball.  相似文献   

13.
We examined 16 white opaque inclusions exposed on two polished slices of a Muong Nong‐type Australasian tektite from Muong Phin, Laos. The inclusions usually consist of a core, surrounded by a froth layer, and a quartz neoblast layer. The cores are composed primarily of a mixture of silica glass, coesite, and quartz in varying proportions. A thin (up to ~4 μm) layer of SiO2‐poor glass enriched in FeO, MgO, CaO, Al2O3, and TiO2 is observed as a bright halo in backscattered electron images around the quartz neoblasts and in places contains μm‐sized crystals, which may be Fe,Mg‐rich spinel. The distribution and textural relationships between the coesite‐bearing inclusions and the tektite matrix point to an in situ formation of the coesite due to an impact, rather than to infall, from a nearby impact, into tektite melt produced by the aerial burst of a bolide. The quartz neoblasts probably formed by crystallization of silica melt squeezed out of the inclusion core during the development of the froth layer. The bright halo may be the result of silica diffusing from the adjacent tektite melt into the growing quartz neoblasts. We propose that the survival of coesite was possible due to the froth layer that acted as a heat sink during bubble expansion and then as a thermal insulator.  相似文献   

14.
Abstract— The Brunflo fossil meteorite was found in the 1950s in mid‐Ordovician marine limestone in the Gärde quarry in Jämtland. It originates from strata that are about 5 million years younger than similar limestone that more recently has yielded >50 fossil meteorites in the Thorsberg quarry at Kinnekulle, 600 km to the south. Based primarily on the low TiO2 content (about 1.8 wt%) of its relict chromite the Brunflo meteorite had been tentatively classified as an H chondrite. The meteorite hence appears to be an anomaly in relation to the Kinnekulle meteorites, in which chromite composition, chondrule mean diameter and oxygen isotopic composition all indicate an L‐chondritic origin, reflecting an enhanced flux of meteorites to Earth following the disruption of the L chondrite parent body 470 Ma. New chondrule‐size measurements for the Brunflo meteorite indicate that it too is an L chondrite, related to the same parent‐body breakup. Chromite maximum diameters and well‐defined chondrule structures further show that Brunflo belongs to the L4 or L5 type. Chromites in recently fallen L4 chondrites commonly have low TiO2 contents similar to the Brunflo chromites, adding support for Brunflo being an L4 chondrite. The limestone in the Gärde quarry is relatively rich (about 0.45 grain kg−1) in sediment‐dispersed extraterrestrial chromite grains (>63 μm) with chemical composition similar to those in L chondrites and the limestone (1–3 grains kg−1) at Kinnekulle, suggesting that the enhanced flux of L chondrites prevailed, although somewhat diminished, at the time when the Brunflo meteorite fell.  相似文献   

15.
Abstract— The fall and recovery of the Tagish Lake meteorite in British Columbia in January 2000 provided a unique opportunity to study relatively pristine samples of carbonaceous chondrite material. Measurements of the oxygen isotopic composition of water extracted under stepped pyrolysis from a bulk sample of this meteorite have allowed us to make comparisons with similar data obtained from CI and CM chondrites and so further investigate any relationships that may exist between these meteorites. The much lower yield of water bearing a terrestrial signature in Tagish Lake is indicative of the pristine nature of the meteorite. The relationship between the isotopic composition of this water and reported isotopic values for carbonates, bulk matrix and whole rock have been used to infer the extent and conditions under which parent‐body aqueous alteration occurred. In Tagish Lake the difference in Δ17O isotopic composition between the water and other phases is greater than that found in either CM or CI chondrites suggesting that reaction and isotopic exchange between components was more limited. This in turn suggests that in the case of Tagish Lake conditions during the processes of aqueous alteration on the parent body, which ultimately controlled the formation of new minerals, were distinct from those on both CI and CM parent bodies.  相似文献   

16.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The aim of this study is to determine the fractions of different spiral galaxy types, especially bulgeless disks, from a complete and homogeneous sample of 15 127 edge‐on disk galaxies extracted from the sixth data release from the Sloan Digital Sky Survey. The sample is divided in broad morphological classes and sub types consisting of galaxies with bulges, intermediate types and galaxies which appear bulgeless. A small fraction of disky irregulars is also detected. The morphological separation is based on automated classification criteria which resemble the bulge sizes and the flatness of the disks. Each of these broad classes contains about 1/3 of the total sample. Using strict criteria for selecting pure bulgeless galaxies leads to a fraction of 15% of simple disk galaxies. We compare this fraction to other galaxy catalogs and find an excellent agreement of the observed frequency of bulgeless galaxies. Although the fraction of simple disk galaxies in this study does not represent a “cosmic” fraction of bulgeless galaxies, it shows that the relative abundance of pure disks is comparable to other studies and offers a profound value of the frequency of simple disks in the local Universe. This fraction of simple disks emphasizes the challenge for formation and evolution models of disk galaxies since these models are hard pressed to explain the observed frequency of these objects (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

19.
Abstract— Large impact crater formation is an important geologic process that is not fully understood. The current paradigm for impact crater formation is based on models and observations of impacts in homogeneous targets. Real targets are rarely uniform; for example, the majority of Earth's surface is covered by sedimentary rocks and/or a water layer. The ubiquity of layering across solar system bodies makes it important to understand the effect target properties have on the cratering process. To advance understanding of the mechanics of crater collapse, and the effect of variations in target properties on crater formation, the first “Bridging the Gap” workshop recommended that geological observation and numerical modeling focussed on mid‐sized (15–30 km diameter) craters on Earth. These are large enough to be complex; small enough to be mapped, surveyed and modelled at high resolution; and numerous enough for the effects of target properties to be potentially disentangled from the effects of other variables. In this paper, we compare observations and numerical models of three 18–26 km diameter craters formed in different target lithology: Ries, Germany; Haughton, Canada; and El'gygytgyn, Russia. Based on the first‐order assumption that the impact energy was the same in all three impacts we performed numerical simulations of each crater to construct a simple quantitative model for mid‐sized complex crater formation in a subaerial, mixed crystalline‐sedimentary target. We compared our results with interpreted geological profiles of Ries and Haughton, based on detailed new and published geological mapping and published geophysical surveys. Our combined observational and numerical modeling work suggests that the major structural differences between each crater can be explained by the difference in thickness of the pre‐impact sedimentary cover in each case. We conclude that the presence of an inner ring at Ries, and not at Haughton, is because basement rocks that are stronger than the overlying sediments are sufficiently close to the surface that they are uplifted and overturned during excavation and remain as an uplifted ring after modification and post‐impact erosion. For constant impact energy, transient and final crater diameters increase with increasing sediment thickness.  相似文献   

20.
Potassic‐chloro‐hastingsite has been found in melt inclusions in MIL 03346, its paired stones, and NWA 5790. It is some of the most chlorine‐rich amphibole ever analyzed. In this article, we evaluate what crystal chemistry, terrestrial analogs, and experiments have shown about how chlorine‐dominant amphibole (chloro‐amphibole) forms and apply these insights to the nakhlites. Chloro‐amphibole is rare, with about a dozen identified localities on Earth. It is always rich in potassium and iron and poor in titanium. In terrestrial settings, its presence has been interpreted to result from medium to high‐grade alteration (>400 °C) of a protolith by an alkali and/or iron chloride‐rich aqueous fluid. Ferrous chloride fluids exsolved from mafic magmas can cause such alteration, as can crustal fluids that have reacted with rock and lost H2O in preference to chloride, resulting in concentrated alkali chloride fluids. In the case of the nakhlites, an aqueous alkali‐ferrous chloride fluid was exsolved from the parental melt as it crystallized. This aqueous chloride fluid itself likely unmixed into chloride‐dominant and water‐dominant fluids. Chloride‐dominant fluid was trapped in some melt inclusions and reacted with the silicate contents of the inclusion to form potassic‐chloro‐hastingsite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号