首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The short exposure method proved to be very productive in ground-based observations of Mercury. Telescopic observations with short exposures, together with computer codes for the processing of data arrays of many thousands of original electronic photos, make it possible to improve the resolution of images from ground-based instruments to almost the diffraction limit. The resulting composite images are comparable with images from spacecrafts approaching from a distance of about 1 million km. This paper presents images of the hemisphere of Mercury in longitude sectors 90°–180°W, 215°–350°W, and 50°–90°W, including, among others, areas not covered by spacecraft cameras. For the first time a giant S basin was discovered in the sector of longitudes 250°–290°W, which is the largest formation of this type on terrestrial planets. Mercury has a strong phase effects. As a result, the view of the surface changes completely with the change in the planetary phase. But the choice of the phase in the study using spacecrafts is limited by orbital characteristics of the mission. Thus, ground-based observations of the planet provide a valuable support.  相似文献   

2.
Recent ground-based astronomical short-exposure observations of Mercury have yielded more than 50000 electronic pictures of the planet at different phases and different positions relative to the Earth. The work was fulfilled in several observatories. The use of available and newly developed processing methods applied to large volumes of electronic frames allowed the images of a considerable portion of Mercury’s surface to be synthesized. We present the images of the 90°–180°W, 215°–280°W, and 50°–90°W sectors containing, among others, the longitudes not covered by spacecraft imaging. Along with the listed images, we present the results of recent observations of Mercury carried out on November 20–24, 2006 during the morning elongation at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) (Nizhnii Arkhyz, Karachai-Circassia, the Caucasus). The 265°–350°W longitude sector of Mercury was observed. The observations were made under good weather conditions. Among the main tasks of the new observations was obtaining a complete view of the S Basin. Previously, this basin had been investigated in fragments only by the actual solar illumination conditions. During the period of November 20–24, 2006, the S Basin was on the sunlit side of the planet. The complete image of the basin was obtained from the processing of a large number of electronic frames. The appearance of the S Basin is compared with the data on its relief acquired with radar methods. In this longitude sector, a number of other unusual surface features were found; among them, are a huge “Medallion” crater and other formations. The results considered in the present and earlier published studies are compared with the Mariner 10 data (1974–1975) and with the data received from the Messenger spacecraft during its first flyby of the planet (January 2008).  相似文献   

3.
Robert Landau 《Icarus》1982,52(1):202-204
E. Van Hemelrijck and J. Vercheval [Icarus48, 167–179 (1981)] presented calculations of the insolation at Mercury and Venus which neglect the finite angular size of the Sun. To determine the temperature structure in the subsurface a more accurate calculation is needed, especially at longitudes ±90° on Mercury, where the Sun takes 18 days to rise or set. These calculations are presented here.  相似文献   

4.
Kenneth P. Klaasen 《Icarus》1976,28(4):469-478
Recent measurements made from high-resolution Mariner 10 photography of the planet Mercury yield a rotation period of 58.6461 ± 0.005 days, in excellent agreement with the period required for a precise 23 resonance with its orbital period (58.6462 days). The axis of rotation of the planet was calculated to be offset about 2° from the perpendicular to its orbital plane within a 50% probability error ellipse of ±2.6° by ±6.5°. Dynamical considerations make it most likely that the true displacement from the orbit normal is less than 1°.  相似文献   

5.
Reflectance spectra of Mercury, covering the spectral range of ~0.3–1.1 μm obtained during 1963–1976, were examined for any correlations with surface terrain. Mercury's 6.1385°/day rotational rate, the phases of the planet around maximum elongations, and bidirectional reflectance spectroscopy theory were used to identify the surface area associated with each spectrum. Data from 1974–1975, re-reduced with improved standard star flux ratios, show a weak absorption band in the near infrared not see in earlier analyses. Older spectra suggest that the western longitudes of the unimaged side of Mercury are similar to the rest of the planet. Spectra of the intercrater plains in the 0–90° quadrant suggest a possible absorption band. Spectra of areas dominated by Caloris Basin with the encompassing smooth plains may show Fe2+ abundances in the soil comparable to lunar highlands soil. No striking differences between spectra of intercrater plains and spectra of smooth plains are found. The absorption features seen in spectra of Mercury are generally weaker than features seen in lunar spectra.  相似文献   

6.
《Icarus》1987,71(3):386-396
Linear polarization was observed on the integrated disk of Mercury with seven filters between 0.3 and 1.0 μm, and between 53° and 130° phase angle. Polarization-time variations were found and they are mostly explained by longitude dependence through variation in brightness or other properties over the surface. The polarization-wave-length dependence is flatter than for the Moon, and the polarization-albedo relation also differs, indicating a difference in surface composition and/or texture.  相似文献   

7.
We took electronic photographs of Mercury on the side of the planet that was not photographed from the Mariner-10 spacecraft in 1973–1975 by the millisecond-exposure method in ground-based observations. Based on these photographs, we synthesized resolved images of the surface of unknown regions of the planet. The capabilities of the method are limited by the small angular size of the planetary disk (only 7.3 arcsec at average quadrature), specific difficulties of Mercury’s ground-based observations, their very limited duration, and the laboriousness of the subsequent computer-aided observational data processing. The millisecond-exposure method is complex, but a sufficient number of primary electronic photographs can be taken under good seeing conditions for the subsequent synthesis of Mercurian images with a resolution of no worse than the diffraction limit. A giant basin about 2000 km in diameter and other large structures are distinguished in the synthesized images of the planet. In the regions where radar data are available, these structures can be identified with previously found ones. In some measure, the synthesized images allow the relief of the longitude sector 210°–290° W to be reconstructed on Mercury. It can be asserted with caution that the large relief features are distributed asymmetrically over the surface of Mercury, much as observed on other terrestrial planets, the Moon, and many satellites of giant planets.  相似文献   

8.
An analysis of the Mariner 10 dual frequency radio occultation recordings has yielded new information on the radius and atmosphere of Mercury. The ingress measurements which were conducted near 1.1° North latitude and 67.4° East longitude on the night side of the planet, gave a value for the radius of 2439.5 ± 1 km. Egress near 67.6° North latitide and 258.4° East longitude in the sunlit side yielded a radius of 2439.0 ± 1 km. The atmospheric measurements showed the electron density to be less than 103 cm?3 on both sides of the planet. From the latter result one may infer an upper limit to the dayside surface gas density of 106 molecules per cm3.  相似文献   

9.
Abstract On the basis of reported optical measurements of iron and stony meteorites, upper and lower limits for solar absorptance and hemispherical emittance of the surfaces of meteoroids have been established. Temperatures of three classes of meteoroids, none larger than approximately 10 meters in radius, have been calculated for various orbits and a/e ratios. These classes are light chondrites, dark chondrites and the irons. Temperatures for a meteoroid in a Mercury orbit range from 100° C for a light chondrite to 400° C for an iron.  相似文献   

10.
Polarimetric measurements were collected at different areas of the surface of Mercury, and for the whole disk in six wavelengths. The curves of polarization are compared with telescopic observations of the Moon and laboratory studies of minerals and returned lunar samples. The negative branch of polarization proves that Mercury's surface is almost everywhere covered by a regolith layer of fines of the lunar type, also made of dark and adsorbing material, and most probably of the same impact generated origin. The polarization maximum of Mercury is reproduced by lunar samples of fines of intermediate albedo corresponding to the lightest regolith found in the Apollo explored maria.The albedo of Mercury at phase angle 5° deduced from telescopic photometry is to be corrected by a factor of 1.20 and the best “polarimetric” values of albedos are 0.130 at λ = 0.585μm, 0.119 at λ = 0.520 μm, 0.093 at λ = 0.379μm and 0.087 at λ = 0.354μm. The contrast between light and dark-lined regions at the surface of Mercury is most probably much fainter than between the maria and continents on the Moon.The molecular atmosphere of Mercury, if any, has a surface pressure probably smaller than 2 × 10?4 bars.  相似文献   

11.
This paper describes variations in the insolation on Mercury resulting from fluctuations of the orbital eccentricity (0.11≤e≤0.24) of the planet. Equations for the instantaneous and the daily insolation are briefly discussed and several numerical examples are given illustrating the sensitivity of the solar radiation to changes ine. Special attention is paid to the behavior of the solar radiation distribution curves near sunrise and sunset which at the warm pole of Mercury (longitudes ±90°) occur as the planet goes through perihelion. It has been found that for eccentricities larger than about 0.194 there exists two permanent thermal bulges on opposite sides of the Mercurian surface that alternately point to the Sun at every perihelion passage. The critical value ofe past which the Sun shortly sets after perihelion is near 0.213.  相似文献   

12.
This paper presents a study of magnetic field data obtained by Mariner 10 during the third and final encounter with the planet Mercury on 16 March 1975. A well developed bow shock and modest magnetosphere, previously observed at first encounter on 29 March 1974, were again observed. In addition, a much stronger magnetic field near closest approach, 400γ versus 98γ, was observed at an altitude of 327 km and approximately 68° north Mercurian latitude. Spherical harmonic analysis of the data provides an estimate of the centered planetary magnetic dipole of 5.0 × 1022 gauss-cm3 with the axis tilted 12° to the rotation axis and in the same sense as Earth's. The interplanetary field was sufficiently different between first and third encounters that in addition to the very large field magnitude observed it argues strongly against a complex induction process generating the observed planetary field. While a possibility exists that Mercury possesses a remanent field due to magnetization early in its formation, a present day active dynamo seems to be a more likely candidate for its origin. The existence of such a dynamo argues for a mature planetary interior with a well-developed core.  相似文献   

13.
A detailed study to evaluate ground-based photographs of Mercury has been carried out. Models of the surface scattering properties have been assumed and smeared with a Gaussian function for direct comparison with center-to-limb scans along Mercury's intensity equator. Data from a range of phase angles from 31° to 92° have been compared with smeared models assuming a Lambert surface, a surface which obeys the Lommel-Seeliger law and one which is Minnaertian, having a variable coefficient. Within the limits of the observations a lunar Minnaert surface yields the most consistent interpretation. An objective evaluation of the resolution of the photographs is obtained in terms of Gaussian half-widths.  相似文献   

14.
A series of observations of Mercury were performed at the Special Astrophysical Observatory using the short-exposure method to image a hitherto unknown part of the Hermean surface. Several thousand electronic frames of the planet were taken during its morning elongation in the period from November 20–24, 2006. The phase angle of Mercury varied from 103° to 80°, and the interval of planetocentric longitudes observed spanned from 260 to 350°W. Observations were made with a CCD camera attached to the 1-m Zeiss-1000 Ritchey-Chretien telescope operating with a KS-19 filter (short-wavelength border at 700 nm). The Hermean surface is known to be almost impossible to resolve on ordinary images. A reduction of a large number of frames taken with millisecond-long exposures made it possible to obtain a rather sharp image of the observed part of the Hermean surface. One of the primary aims of new observations was to have a general outline of the basin earlier found by one of the authors (L. Ksanfomaliti). We are the first to image this giant feature. The size of its inner part exceeds that of the largest lunar Mare — Mare Imbrium, however, unlike the latter the studied basin is of impact origin. The synthesized images reveal a number of large impact craters of various ages, as well as smaller features. The highest resolution achieved corresponds to the diffraction limit for the instrument employed, or about 100 km on the Hermean surface.  相似文献   

15.
A.G.W. Cameron 《Icarus》1985,64(2):285-294
During recent years my research on the primitive solar nebular has followed two main themes: (1) Very early in the development of the nebula conditions probably favored the occurence of major gaseous instabilities leading to the formation of giant gaseous protoplanets, but the rapid rise of the external temperature soon evaporated the envelopes of these protoplanets, possibly leaving behind precipitated solids which formed the cores and mantles of the terrestrial planets. (2) Models of the nebula indicate a later stage when conditions in the inner Solar System became very hot; at the position of Mercury the temperature was probably in the range 2500–3500°K. This leads to the hypothesis that the original protomercury was a body substantially more massive than the present planet and of normal composition, but that when it was immersed in the high-temperature field of the dissipating solar nebula, most of the rocky mantle was vaporized and mixed into the solar nebula gases and carried away by them. This hypothesis is investigated in the present paper. For simplicity the vaporization of a mantle composed of enstatite, MgSiO3, was computed for a planet with 2.25 the mass of Mercury at a temperature of 3000°K. It is argued that the mantle could probably be largely removed in the available time of 3 × 104 years. Subsequent accretion would restore some magnesium silicates to the mantle of the planet.  相似文献   

16.
The new analysis of radar observations of inner planets for the time span 1964–1989 is described. The residuals show that Mercury topography is an important source of systematic errors which have not been taken into account up to now. The longitudinal and latitudinal variations of heights of Mercury surface were found and an approximate map of equatorial zone |?|≤120° was constructed. Including three values characterizing global nonsphericity of Mercury surface into the set of parameters under determination allowed to improve essentially all estimates. In particular, the variability of the gravitational constantG was evaluated: $$\dot G/G = (0.47 \pm 0.47) \times 10^{ - 11} yr^{ - 1} $$ . The correction to Mercury perihelion motion: $$\Delta \dot \pi = - 0''.017 \pm 0''.052 cy^{ - 1} $$ and linear combination of the parameters of PPN formalism: $$\upsilon = (2 + 2\gamma - \beta )/3 = 0.9995 \pm 0.0013$$ were determined; they are in a good agreement with General Relativity predictions. The obtained values Δ.π and ν correspond to the negligible solar oblateness, the estimate of solar quadrupole moment being: $$J_2 = ( - 0.13 \pm 0.41) \times 10^{ - 6} $$ .  相似文献   

17.
Two space missions dedicated to Mercury (MESSENGER and BepiColombo) aim at understanding its rotation and confirming the existence of a liquid core. This double challenge requires much more accurate models for the spin-orbit resonant rotation of Mercury. The purpose of this paper is to introduce planetary perturbations on Mercury’s rotation using an analytical method and to analyse the influence of the perturbations on the libration in longitude. Applying a perturbation theory based on the Lie triangle, we were able to re-introduce short periodic terms into the averaged Hamiltonian and to compute the evolution of the rotational variables. The perturbations on Mercury’s forced libration in longitude mainly come from the orbital motion of Mercury (with an amplitude around 41 arcsec that depends on the momenta of inertia). It is completed by various effects from Jupiter (11.86 and 5.93 year-periods), Venus (with a 5.66 year-period), Saturn (14.73 year-period), and the Earth (6.58 year-period). The amplitudes of the oscillations due to Jupiter and Venus are approximately 33% and 10% of those from the orbital motion of Mercury and the amplitudes of the oscillations due to Saturn and the Earth are approximately 3% and 2%. We compare the analytical results with the solution obtained from the spin-orbit numerical model SONYR.  相似文献   

18.
H.J. Melosh  D. Dzurisin 《Icarus》1978,35(2):227-236
The surface of Mercury exhibits a global tectonic system consisting of an ancient set of NE and NW trending lineaments and a younger set of planimetrically arcuate escarpments interpreted as thrust or high-angle reverse faults. The trends, distribution, and age relations of these tectonic features can be explained by a combination of tidal despinning and global contraction of the planet. In our model, early tidal despinning resulted in conjugate shear fractures trending roughly N60°E and N60°W which were subsequently modified by a variety of surface processes to produce the presently visible set of lineaments. Continued despinning plus global contraction produced thrust faults with roughly north-south trends. Final contraction may have postdated despinning and produced randomly oriented thrust faults. All of these events predated the formation of Caloris basin, because basin-associated deposits blanket both lineaments and arcuate thrust faults.  相似文献   

19.
The orientation of a planet is controlled by the positions of the principal axes of the inertia tensor relative to the planetary surface. Using the theory for the deflection of thin elastic shells the principal axes are computed after emplacement of an arbitrary axisymmetrical load. The partial compensation of the load and the partial relaxation of rotational flattening are included in the computation. It is found that the amount of reorientation is independent of lithosphere thickness. The parameters controlling the amount of reorientation are the location of the load and the size of the load compared to the rotational flattening. The results indicate that the Tharsis rise has probably reoriented Mars by only 3 to 9° and certainly less that 18°. The position of the Caloris Basin on Mercury indicates that if the surrounding lava sheet controls the planetary orientation then the lava sheet is probably less than 2000 m thick.  相似文献   

20.
Joseph A. Burns 《Icarus》1976,28(4):453-458
Mercury, currently rotating very slowly, probably rotated faster in the past. If Mercury's rotation period had been near 8 hours initially, similar to that of most solar system bodies today, it would have been flattened by a few percent. As Mercury was slowed by solar tides, craters which were circular when they were emplaced would have been distorted by the same few percent. Substantial surface stresses, well above the fracture stress, would have been produced unless stress relief occurred; these stresses should have produced tensional fractures near the poles and two intersecting sets of shear planes in equatorial regions. Satellite orbits about the slowly spinning Mercury have been shown to collapse onto its surface: the impact craters resulting from these hypothetical lost satellites should be elongated along the orbit paths, which probably lie near the equator. However, none of these features has been found on the Mariner 10 images. They may be obscured by the effects of tidal heating that should cause an overall internal temperature increase of about 100°K although the increase would be substantially more in certain regions. Radial tides, sometimes called push-pull tides, are important at the present time because Mercury's large orbital eccentricity causes the planet to undergo significant tidal flexing each orbital period; the contemporary tidal heating due to this mechanism is estimated at more than 1016 erg/sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号