首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract— The lengths of the shadows cast within simple, bowl‐shaped impact craters have been used to constrain their depths on a variety of planetary bodies. This technique, however, only yields the “true” crater depth if the shadow transects the crater center where the floor is deepest. In the past, attempts have been made to circumvent this limitation by choosing only craters where the shadow tip lies very near the crater center; but this approach may introduce serious artifacts that adversely affect the slope of the regressed depth vs. diameter data and its variance. Here we introduce an improved method for deriving depth information from shadow measurements that considers three basic shape variations of simple craters: paraboloidal, conical, and flat‐floored. We show that the shape of the cast shadow can be used to constrain crater shape and we derive improved equations for finding the depths of these simple craters.  相似文献   

2.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   

3.
Recent work on the shapes of small, simple impact craters on the Moon has shown that the parabolic ideal does not well represent the vast majority of these craters. They are hyperbolic in shape and usually resemble a cone more than a parabola. A parabolic shape also does not fit the most commonly held archetype for simple craters in general (Linné), which is also hyperbolic. In addition, Linné itself may not be the best model for fresh simple craters, in terms of cross-sectional shape, although shape data to compare it to have heretofore been lacking. Here, the “free shadowfront method” for determining the shapes of simple craters is used to measure 64 fresh simple craters on five lunar maria to test both assumptions. Laser altimetry cross sections, available for many of the craters measured herein, are used to complement and spot-check the shadow measurement results, and thereby demonstrate the efficacy of the free shadowfront method. A new shape model is established, and two craters that better fit this model than Linné are identified. These are located at 24.45° N/328.12° E and 31.35° N/296.46° E and have diameters of 1.40 and 2.73 km, respectively. An apparent dichotomy between fresh simple craters smaller than 2.5 km and those larger than this is observed. Flat floors are found to be ubiquitous among the larger craters, but rare and small in extent in smaller ones. A slide in one crater which appears to be an incipient flat floor suggests a major mode of formation for these flat floors.  相似文献   

4.
Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high‐resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated‐cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, ?100, and ?200 m relative to the target surface. The kink at ?100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s?1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one‐layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical‐ and parabolic‐shaped craters. The two‐layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value (~200 m) for the upper fractured layer is set. We have also found that the truncated‐cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high‐albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean value), and on the approximate, large‐scale preimpact target properties. Observations suggest that these large‐scale material properties likely include some important smaller scale variations, disclosed as subtle morphological steps in the crater walls. Furthermore, the modeling results allow advancing some hypotheses on the geological evolution of the Mare Serenitatis region where Linné crater is located (unit S14). We suggest that unit S14 has a thickness of at least a few hundreds of meters up to about 400 m.  相似文献   

5.
Abstract The PALANQUIN experiment was a 4.3 kiloton nuclear explosion detonated at a depth of 280 feet (85.3 m) in layered trachytic volcanic rocks at the Nevada Test Site. The resulting apparent crater had an unusual conical shape and dimensions of 119.1 feet (36.3 m) radius, and 78.8 feet (24.0 m) depth. The crater volume was 46,800 cubic yards (35,570 cubic meters).  相似文献   

6.
Abstract— The Lockne crater in Sweden is a marine‐target crater, formed in a shelf sea, approximately 460 Ma ago. The crater structure consists of an inner crater surrounded by an outer, inclined surface that extends to almost 12 km from the center. Marine craters differ in several respects from craters formed on land. One special feature is the formation of resurge gullies excavated by the erosional force of the resurging sea water after the impact. The formation of these gullies strongly depends on the ratio crater‐rim height to water depth, as well as on the size of the impact structure. Such gullies are known from very few marine‐target craters. At the Lockne impact site, four gullies are identified, each of which cuts radially through the rim of the outer crater. The rapid collapse of that part of the crater cavity, which formed in the seawater, resulted in forceful flooding of the crater. The resurging seawater not only contained fallback‐ejecta; on its way towards the cavity on the sea‐bottom it incorporated fractured lithologies from the sea‐bottom as well. This entrained material disintegrated during transport and constitutes today the dominantly monomict lower part of the resurge sequence. The resurge flood was highly turbulent, highly erosive, and developed to a probable hyperconcentrated flow or a possible water flood. The erosion in the gullies proceeded as headward erosion down to the transition zone between the brecciated and the less disintegrated crystalline basement.  相似文献   

7.
Abstract— The Ilumetsa impact craters were discovered in 1938 in the course of geological mapping. In the crater field area, the Middle Devonian bedrock consists of light‐yellow weakly cemented siltstones and sandstones of the Givetian Burtnieki Regional Stage, which are overlain by a 1–2 m thick layer of reddish‐brown loamy till. Põrguhaud, the biggest crater, has a diameter of 75–80 m at the top of the uplifted rim and is 12.5 m deep. The zone of authochtonous breccias below the apparent crater extends to 30 m deep. The crater is partly filled with a thin layer of gyttja and peat up to 2 m thick. Radiocarbon ages of 6030 ± 100 (TA‐310) and 5910 ± 100 (TA‐725) years B.P. from the lowermost organic layer and palynological evidence suggest that the age of the impact was ~6000 14C years B.P. The Sügavhaud crater has a diameter of 50 m at the top of the rim and is 4.5 m deep. Organic matter on the bottom of the crater is absent. As precise age determination of the Ilumetsa craters by direct dating methods has proved inconclusive, we proposed a method of geological correlation which is based on the occurrence of impact spherules in lake and bog sediments around the crater field. Radiocarbon dating of samples from a peat layer with glassy spherules of impact origin in the Meenikunno Bog, 6 km southwest of the Ilumetsa crater field, yielded the ages of 6542 ± 50 (Tln‐2214) for the depth interval 5.6–5.7 m and 6697 ± 50 (Tln‐2316) years B.P. for the depth interval 5.7–5.8 m. These dates suggest that the Ilumetsa craters were formed ~6600 years ago.  相似文献   

8.
Abstract— Post‐impact crater morphology and structure modifications due to sediment loading are analyzed in detail and exemplified in five well‐preserved impact craters: Mjølnir, Chesapeake Bay, Chicxulub, Montagnais, and Bosumtwi. The analysis demonstrates that the geometry and the structural and stratigraphic relations of post‐impact strata provide information about the amplitude, the spatial distribution, and the mode of post‐impact deformation. Reconstruction of the original morphology and structure for the Mjølnir, Chicxulub, and Bosumtwi craters demonstrates the long‐term subsidence and differential compaction that takes place between the crater and the outside platform region, and laterally within the crater structure. At Mjølnir, the central high developed as a prominent feature during post‐impact burial, the height of the peak ring was enhanced, and the cumulative throw on the rim faults was increased. The original Chicxulub crater exhibited considerably less prominent peak‐ring and inner‐ring/crater‐rim features than the present crater. The original relief of the peak ring was on the order of 420–570 m (currently 535–575 m); the relief on the inner ring/crater rim was 300–450 m (currently ?700 m). The original Bosumtwi crater exhibited a central uplift/high whose structural relief increased during burial (current height 101–110 m, in contrast to the original height of 85–110 m), whereas the surrounding western part of the annular trough was subdued more that the eastern part, exhibiting original depths of 43–68 m (currently 46 m) and 49–55 m (currently 50 m), respectively. Furthermore, a quantitative model for the porosity change caused by the Chesapeake Bay impact was developed utilizing the modeled density distribution. The model shows that, compared with the surrounding platform, the porosity increased immediately after impact up to 8.5% in the collapsed and brecciated crater center (currently +6% due to post‐impact compaction). In contrast, porosity decreased by 2–3% (currently ?3 to ?4.5% due to post‐impact compaction) in the peak‐ring region. The lateral variations in porosity at Chesapeake Bay crater are compatible with similar porosity variations at Mjølnir crater, and are considered to be responsible for the moderate Chesapeake Bay gravity signature (annular low of ?8 mGal instead of ?15 mGal). The analysis shows that the reconstructions and the long‐term alterations due to post‐impact burial are closely related to the impact‐disturbed target‐rock volume and a brecciated region of laterally varying thickness and depth‐varying physical properties. The study further shows that several crater morphological and structural parameters are prone to post‐impact burial modification and are either exaggerated or subdued during post‐impact burial. Preliminary correction factors are established based on the integrated reconstruction and post‐impact deformation analysis. The crater morphological and structural parameters, corrected from post‐impact loading and modification effects, can be used to better constrain cratering scaling law estimates and impact‐related consequences.  相似文献   

9.
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8–5.3 km s?1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3–30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi‐infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well‐consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s?1) is effectively semi‐infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7–15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well‐consolidated basalt, no crater forms in the exposed subsurface layer.  相似文献   

10.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

11.
Abstract— The applicability of the Euler deconvolution method in imaging impact crater structure vis‐à‐vis delineation of source depth of the circular magnetic anomaly and/or basement depth beneath the crater is addressed in this paper. The efficacy of the method has been evaluated using the aeromagnetic data obtained over the Serra da Cangalha impact crater, northeastern Brazil. The analyses of the data have provided characteristic Euler deconvolution signatures and structural indices associated with impact craters. Also, through the interpretation of the computed Euler solutions, our understanding of the structural features present around the impact structure has been enhanced. The Euler solutions obtained indicate shallow magnetic sources that are interpreted as possibly post‐impact faults and a circular structure. The depth of these magnetic sources varies between 0.8 and 2.5 km, while the Precambrian basement depth was found at ?1.5 km. This is in good agreement with the estimates of the Precambrian basement depth of about 1.1 km, calculated using aeromagnetic data. The reliability of the depth solutions obtained through the implementation of the Euler method was confirmed through the use of the existing information available in the area and the result of previous studies. We find that the Euler depth solutions obtained in this study are consistent with the results obtained using other methods.  相似文献   

12.
Abstract— Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine‐target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within “contacts 1 and 2,” cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long‐lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller “contact 2” with a duration of 100,000 yr and the low present crater formation rate, only ?1–2 detectable marine‐target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger “contact 1‐Meridiani,” with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine‐target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine‐target craters. The implications regarding the discovery of marine‐target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions.  相似文献   

13.
Abstract— The 3.4 km wide, so‐called Kgagodi Basin structure, which is centered at longitude 27°34.4′ E and latitude 22°28.6′ S in eastern Botswana, has been confirmed as a meteorite impact structure. This crater structure was first recognized through geophysical analysis; now, we confirm its impact origin by the recognition of shock metamorphosed material in samples from a drill core obtained close to the crater rim. The structure formed in Archean granitoid basement overlain and intruded by Karoo dolerite. The crater yielded a gravity model consistent with a simple bowl‐shape crater form. The drill core extends to a depth of 274 m and comprises crater fill sediments to a depth of 158 m. Impact breccia was recovered only between 158 and 165 m depth, below which locally brecciated basement granitoids grade into fractured and eventually undeformed crystalline basement, from ~250 m depth. Shock metamorphic effects were only found in granitoid clasts in the narrow breccia zone. This breccia is classified as suevitic impact breccia due to the presence of melt and glass fragments, at a very small abundance. The shocked grains are exclusively derived from granitoid target material. Shock effects include multiple sets of planar deformation features in quartz and feldspar; diaplectic quartz, and partially and completely isotropized felsic minerals, and rare melt fragments were encountered. Abundances of some siderophile elements and especially, Ir, in suevitic breccia samples are significantly elevated compared to the contents in the target rocks, which provides evidence for the presence of a small meteoritic component. Kgagodi is the first impact structure recognized in the region of the Kalahari Desert in southern Africa. Based on lithological and first palynological evidence, the age of the Kgagodi structure is tentatively assigned to the upper Cretaceous to early Tertiary interval. Thus, the crater fill has the potential to provide a long record of paleoclimatic conditions.  相似文献   

14.
In this paper we describe and evaluate the so-called shadow method. This method can be used to estimate the optical depth of the Martian atmosphere from the differences in brightness between shadowed and sunlit regions observed from an orbiter. We present elaborate and simplified versions of the method and analyze the capabilities and the sources of errors. It proves essential to choose shadowed and sunlit comparison regions with similar surface properties. Accurate knowledge of the observing geometry, including the slopes of the observed region, is important as well, since the procedure should be corrected for the non-horizontal surface. Moreover, the elaborate version of the shadow method can be sensitive to (i) the optical model of aerosols and (ii) the assumed bi-directional reflectance function of the surface. To obtain reliable estimates, the analyzed images must have a high spatial resolution, which the HiRISE camera onboard the MRO provides. We tested the shadow method on two HiRISE images of Victoria crater (TRA_0873_1780 and PSP_001414_1780) that were taken while this crater was the exploration site of the Opportunity rover. While the rover measured optical depth τ approximately in the ranges from 0.43 to 0.53 and from 0.53 to 0.59 by imaging the sun, our shadow procedure yielded τ about 0.50 and 0.575, respectively (from the HiRISE's red images). Thus, the agreement is quite good. The obtained estimates of the surface albedo are about 0.20 and 0.17, respectively.  相似文献   

15.
The Målingen structure is an approximately 700 m wide, rimmed, sediment‐filled, circular depression in Precambrian crystalline basement approximately 16.2 km from the concentric, marine‐target Lockne crater (inner, basement crater diameter approximately 7.5 km, total diameter in sedimentary strata approximately 13.5 km). We present here results from geologic mapping, a 148.8 m deep core drilling from the center of the structure, detailed biostratigraphic dating of the structure's formation and its age correlation with Lockne, chemostratigraphy of the sedimentary infill, and indication for shock metamorphism in quartz from breccias below the crater infill. The drill core reveals, from bottom to the top, approximately 33 m of basement rocks with increased fracturing upward, approximately 10 m of polymict crystalline breccia with shock features, approximately 97 m of slumped Cambrian mudstone, approximately 4.7 m of a normally graded, polymict sedimentary breccia that in its uppermost part grades into sandstone and siltstone (cf. resurge deposits), and approximately 1.6 m of secular sediments. The combined data set shows that the Målingen structure formed in conjunction with the Lockne crater in the same marine setting. The shape and depth of the basement crater and the cored sequence of crystalline breccias with shocked quartz, slumped sediments, and resurge deposits support an impact origin. The stratigraphic and geographic relationship with Lockne suggests the Lockne and Målingen craters to be the first described doublet impact structure by a binary asteroid into a marine‐target setting.  相似文献   

16.
Abstract— The proposed Sirente crater field consists of a slightly oblong main structure (main crater) 120 m in width and about 30 smaller structures (satellite craters), all in unconsolidated but stiff carbonate mud. Here we focus on the subsurface structure of the satellite craters and compare the Sirente field with known meteorite crater fields. We present a more complete outline of the crater field than previously reported, information on the subsurface morphology of a satellite crater (C8) 8 m in width, radiocarbon and thermoluminescence (TL) ages of material from this crater, and evidence for heated material in both crater C8 and the rim of the main crater. Crater C8 has a funnel shape terminating downwards, and evidence for soil injection from the surface to a depth of 9 m. The infill contained dispersed charcoal and small, irregular, porous fragments of heated clay with a calibrated age of b.p. 1712 (13C‐corrected radiocarbon age: b.p. 1800 ± 100) and a TL age of b.p. 1825 (calculated error ± 274). Together with previous radiocarbon age (b.p. 1538) of the formation of the main crater (i.e., target surface below rim), a formation is suggested at the beginning of the first millennium a.d. Although projectile vaporization is not expected in Sirente‐sized craters in this type of target material, we used geochemistry in an attempt to detect a meteoritic component. The results gave no unequivocal evidence of meteoritic material. Nevertheless, the outline of the crater field, evidence of heated material within the craters, and subsurface structure are comparable with known meteorite crater fields.  相似文献   

17.
Pangboche crater (17.2°N, 226.7°E; 10.4 km dia.) lies close to the summit of Olympus Mons volcano, Mars, at an elevation of ~20.9 km above the datum. Given a scale height of 11.1 km for the atmosphere, this relatively large fresh crater most likely formed at an atmospheric pressure <1 mbar in essentially volatile‐free young lava flows. Detailed analysis of Pangboche crater from High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) images reveals that volatile‐related features (e.g., fluidized ejecta layers and pitted floor material) are absent. In contrast, abundant impact melt occurs on the floor, inner walls, and rim of the crater, and there is an extensive field of secondary craters that extend up to approximately 45 km from the rim crest. All of these attributes argue that it was the absence of volatiles in the target rocks at the time of crater formation, rather than the thin atmosphere, which had a controlling influence on crater morphology. Digital elevation data derived from the CTX images reveal that Pangboche crater has a depth of about 954 m (depth/diameter = approximately 0.092) and that uplifted target rocks comprise about 58% of the relief of the 180 m‐high north rim. As the target material comprised a sequence of layered lava flows, Pangboche crater may well represent the best crater on Mars for direct comparison with craters formed on the Moon (permitting variations in gravitational effects to be investigated) or on Mercury (allowing the role of the atmosphere to be studied).  相似文献   

18.
Abstract– Hypervelocity (2.5–7.8 km s?1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target‐projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water‐saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5–40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light‐colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.  相似文献   

19.
To understand the process of cosmic dust particle impacts and translate crater morphology on smoothed metallic surfaces to dust properties, correct calibration of the experimental impact data is needed. This article presents the results of studies of crater morphology generated by impacts using micron‐sized polypyrrole (PPy)‐coated olivine particles. The particles were accelerated by an electrostatic dust accelerator to high speeds before they impacted onto polished aluminum targets. The projectile diameter and velocity ranges were 0.3–1.2 μm and 3–7 km s?1. After impact, stereopair images of the craters were taken using scanning electron microscope and 3‐D reconstructions made to provide diameter and depth measurements. In this study, not just the dimensions of crater diameters and depths, but also the shape and dimensions of crater lips were analyzed. The craters created by the coated olivine projectiles are shown to have complicated shapes believed to be due to the nonspherical shape of the projectiles.  相似文献   

20.
Abstract Seismic data across the offshore half of the Chicxulub impact crater reveal a 145 km‐diameter post‐impact basin to be a thickening of Tertiary sediment, which thickens by ?0.7 sec from the basin margin to the basin center. The basin existed long after the impact and was gradually infilled to its current flat surface. A suite of seismic horizons within the impact basin have been picked on four reflection lines across the crater. They reveal that the western and northwestern parts of the impact basin were filled first. Subsequently, there was a dramatic change in the depositional environment, indicated by an unconformable surface that can be mapped across the entire basin. A prograding shelf sequence downlaps onto this unconformity in the eastern basin. The seismic stratigraphic relationships suggest a marine regression, with sedimentation becoming gradually more passive as sediments fill the eastern part of the impact basin. The central and northeastern parts of the basin are filled last. The onshore hole Yaxcopoil‐1 (Yax‐1), which was drilled on the flanks of the southern basin, has been projected onto the offshore seismic data to the west of the crater center. Using dates obtained from this onshore well and regional data, approximate ages have been placed on the most significant horizons in the offshore seismic data. Our preliminary interpretation is that the western and northwestern basins were almost entirely filled by 40 Ma and that the marine regression observed in the eastern basin is early Miocene in age. Offshore seismic stratigraphic analyses and onshore data within Yax‐1 suggest that the early Paleocene is highly attenuated across the impact basin. The Mesozoic section appears to be ?1 km thicker offshore than onshore. We calculate that, given this offshore thickening, the volume of Mesozoic rocks that have been excavated, melted, or vaporized during impact is around 15% larger than expected from calculations that assume the offshore thickness is equal to that onshore. This has significant consequences for any environmental calculations. The current offset between the K‐T boundary outside and inside the crater is ?700 m. However, infilling of basins with sediments is usually accompanied by subsidence, and immediately following the impact, the difference would have been smaller. We calculate the original topographic offset on the K‐T boundary to have been between 450 and 700 m, which is in agreement with depth‐diameter scaling laws for a mixed target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号