首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Don E. Wilhelms 《Icarus》1976,28(4):551-558
The Mariner 10 television team has argued that extensive plains on Mercury were formed by volcanism and compared them with the demonstrably lunar maria. I believe, however, that in stratigraphic relations, surface morphology, and albedo contrast, the Mercurian plains more closely resemble the lunar light plains. These lunar plains were interpreted as volcanic on the basis of data comparable to that available to the Mariner 10 investigators but have been shown by the Apollo missions to be of impact origin. The plains on Mercury might also be formed of impact materials, perhaps of impact melt or other basin ejecta that behaved more like a fluid when emplaced that did lunar basin ejecta.  相似文献   

2.
Mareta West 《Icarus》1974,21(1):1-11
Inspection of the Mariner 9 B-camera (resolution 100–200m) and A-camera (resolution 1–2km) photographs of Mars reveals numerous analogs of terrestrial and lunar volcanic features. In addition to the exceptionally large constructional features in the Tharsis region, many other large and small landforms present probably are related to endogenic processes.  相似文献   

3.
《Icarus》1986,67(1):181-183
A shield volcano has been identified on Io, based on photoclinometrically determined slope values and planimetric presentation. The slope values (typically 10°) and 2.5 km height of the volcano imply that it is composed of a material with the mechanical properties of basaltic rock. The height of the volcano may also indicate a minimum value of ∼40 km for the thickness of the local lithosphere.  相似文献   

4.
Abstract— We have examined the fate of impact ejecta liberated from the surface of Mercury due to impacts by comets or asteroids, in order to study 1) meteorite transfer to Earth, and 2) reaccumulation of an expelled mantle in giant‐impact scenarios seeking to explain Mercury's large core. In the context of meteorite transfer during the last 30 Myr, we note that Mercury's impact ejecta leave the planet's surface much faster (on average) than other planets in the solar system because it is the only planet where impact speeds routinely range from 5 to 20 times the planet's escape speed; this causes impact ejecta to leave its surface moving many times faster than needed to escape its gravitational pull. Thus, a large fraction of Mercurian ejecta may reach heliocentric orbit with speeds sufficiently high for Earth‐crossing orbits to exist immediately after impact, resulting in larger fractions of the ejecta reaching Earth as meteorites. We calculate the delivery rate to Earth on a time scale of 30 Myr (typical of stony meteorites from the asteroid belt) and show that several percent of the high‐speed ejecta reach Earth (a factor of 2–3 less than typical launches from Mars); this is one to two orders of magnitude more efficient than previous estimates. Similar quantities of material reach Venus. These calculations also yield measurements of the re‐accretion time scale of material ejected from Mercury in a putative giant impact (assuming gravity is dominant). For Mercurian ejecta escaping the gravitational reach of the planet with excess speeds equal to Mercury's escape speed, about one third of ejecta reaccretes in as little as 2 Myr. Thus collisional stripping of a silicate proto‐Mercurian mantle can only work effectively if the liberated mantle material remains in small enough particles that radiation forces can drag them into the Sun on time scale of a few million years, or Mercury would simply re‐accrete the material.  相似文献   

5.
6.
The relevance of the galactic reddeningsE(B-V) derived by Teerikorpi (1978, 1981) from ScI galaxies and quasars, is further confirmed by considerations of close pairs in the sky, the Lick counts, and the counts/NHi ratio. The compact dust clouds suggested by Teerikorpi (1981) could not be detected directly by the counts. However, the counts/NHi ratio showed a behaviour expected if the reddenings really describe the division of the dust in the Local Spiral into compact clouds and a more diffuse medium, in the way suggested in the previous study.  相似文献   

7.
Abstract— This paper develops a methodology to establish absolute Martian ages by deriving isochrons on a plot of Martian impact crater density vs. crater diameter, calibrated by lunar crater/age data. The isochrons illustrated here are based on a Mars/Moon cratering ratio of 1.6 at constant size, but there is a factor of 2 to 4 uncertainty in this ratio and the consequent model ages. Martian crater diameter distributions are determined in several areas down to diameter D = 16–45 m; the shapes of the curves in young areas are found to be close to that of the predicted isochrons and close to the standard production function found by Neukum. The youngest areas studied here display the lunar-like production function down to D ~30 m, where saturation equilibrium sets in. Model crater retention ages of several volcanic units are found to be a few hundred million years or less, with estimated uncertainties ranging from a factor of 2 lower to a factor of 4 higher. The results are consistent with Martian meteorite ages. Volcanism on Mars has probably persisted into the last 10 to 15% of the planet's history and is likely ongoing. Because surfaces as young as a few hundred million years have reached crater saturation equilibrium at D < ~60 to 100 m, Mars is likely to have widespread impact-produced regoliths at least a few meters deep, and this may contribute to the widespread mobile dust and boulder fields of Mars.  相似文献   

8.
The depth-to-diameter (d/D) ratios were determined for 12 craters located near the Mercurian north pole that were identified by Harmon et al. (2001, Icarus 149) as having strong depolarized radar echos. We find that the mean d/D value of these radar-bright craters is the mean d/D value of the general population of non-radar-bright craters in the surrounding north polar region. Previous studies, however, show no difference between d/D values of Mercurian polar and equatorial crater populations, suggesting that no terrain softening which could modify crater structure exists at the Mercurian poles (Barlow et al., 1999, 194, Icarus 141). Thus, the change in d/D is governed by a change in crater depth, probably due to deposition of material inside the crater. The volume of infilling material, including volatiles, in the radar-bright craters is significantly greater than predicted by proposed mechanisms for the emplacement of either water ice or sulfur.  相似文献   

9.
In February 2003, March 2003 and January 2004 Pele plume transmission spectra were obtained during Jupiter transit with Hubble's Space Telescope Imaging Spectrograph (STIS), using the 0.1″ wide slit and the G230LB grating. The STIS spectra covered the 2100-3100 Å wavelength regions and extended spatially along Io's limb encompassing the region directly above and northward of the vent of the Pele volcano. The S2 and SO2 absorption signatures evident in these data indicate that the gas signature at Pele was temporally variable, and that an S2 absorption signature was present ∼12° from the Pele vent near 6±5 S and 264±15 W, suggesting the presence of another S2 bearing plume on Io. Contemporaneous with the spectral data, UV and visible-wavelength images of the plume were obtained in reflected sunlight with the Advanced Camera for Surveys (ACS) prior to Jupiter transit. The dust scattering recorded in these data provide an additional qualitative measure of plume activity on Io, indicating that the degree of dust scattering over Pele varied as a function of the date of observation, and that there were several other dust bearing plumes active during the observations. We present constraints on the composition and variability of the gas abundances of the Pele plume as well as the plumes detected by ACS and recorded within the STIS data, as a function of time.  相似文献   

10.
We present an analysis of the significantly expanded HARPS 2011 radial velocity data set for GJ 581 that was presented by Forveille et al. (2011). Our analysis reaches substantially different conclusions regarding the evidence for a Super‐Earth‐mass planet in the star's Habitable Zone. We were able to reproduce their reported χ2ν and RMS values only after removing some outliers from their models and refitting the trimmed down RV set. A suite of 4000 N‐body simulations of their Keplerian model all resulted in unstable systems and revealed that their reported 3.6σ detection of e = 0.32 for the eccentricity of GJ 581e is manifestly incompatible with the system's dynamical stability. Furthermore, their Keplerian model, when integrated only over the time baseline of the observations, significantly increases the χ2ν and demonstrates the need for including non‐Keplerian orbital precession when modeling this system. We find that a four‐planet model with all of the planets on circular or nearly circular orbits provides both an excellent self‐consistent fit to their RV data and also results in a very stable configuration. The periodogram of the residuals to a 4‐planet all‐circular‐orbit model reveals significant peaks that suggest one or more additional planets in this system. We conclude that the present 240‐point HARPS data set, when analyzed in its entirety, and modeled with fully self‐consistent stable orbits, by and of itself does offer significant support for a fifth signal in the data with a period near 32 days. This signal has a false alarm probability of <4% and is consistent with a planet of minimum mass 2.2 M, orbiting squarely in the star's habitable zone at 0.13 AU, where liquid water on planetary surfaces is a distinct possibility (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Possible sedimentary basins on Titan are potential sites for the formation of mud volcanoes. In order to constrain the appearance of such features in remotely sensed imagery being acquired by the Cassini spacecraft, we have modelled the formation of mud volcanoes on Titan for a series of plausible mud compositions, climatic conditions and geological settings, as well as addressing the full range of eruption variables; mud viscosity, conduit diameter and eruption duration. We find that for an acetylene mud source containing 20 wt% liquid methane in pore spaces, overlain by a sheet of water ice 500-m thick, a mud volcano can grow as high as 140 m. Assuming reasonable eruption parameters, such an edifice may develop into a pancake-like dome several kilometres in diameter. If observed and properly characterised, mud volcanoes would provide an important window on the subsurface distribution and dynamics of solids and liquids in sedimentary basins on Titan.  相似文献   

12.
13.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

14.
A long-popular model for producing Ganymede's bright terrain involves flooding of low-lying graben with liquid water, slush, or warm, soft ice. The model suffers from major problems, however, including the absence of obvious near-surface heat sources, the negative buoyancy of liquid water, and the lack of a mechanism for confining the flows to graben floors. We present new models for cryovolcanic resurfacing to overcome these difficulties. Tidal heating within an ancient Laplace-like orbital resonance (Showman and Malhotra 1997, Icarus 127, 93; Showman et al., 1997, Icarus 129, 367) provides a plausible heat source and could allow partial melting to occur as shallow as 5-10 km depth. Our favored mechanism for delivering this water to the surface invokes the fact that topography—such as a global set of graben—causes subsurface pressure gradients that can pump water or slush upward onto the floors of topographic lows (graben) despite the negative buoyancy of the liquid. These eruptions can occur only within the topographic lows; furthermore, as the low areas become full, the pressure gradients disappear and the resurfacing ceases. This provides an explanation for the observed straight dark-bright terrain boundaries: water cannot overflow the graben, so resurfacing rarely embays craters or other rough topography. Pure liquid water can be pumped to the surface from only 5-10 km depth, but macroscopic bodies of slush ascending within fractures can reach the surface from much greater depths due to the smaller negative buoyancy of slush. A challenge for these models is the short predicted gravitational relaxation timescale of topographic features at high heat flows; the resurfacing must occur before the graben topography disappears. We also evaluate alternate resurfacing mechanisms, such as pumping of liquid water to the surface by thermal expansion stresses and buoyant rise of water through a silicate-contaminated crust that is denser than liquid water, and conclude that they are unlikely to explain Ganymede's bright terrain.  相似文献   

15.
Observational and theoretical considerations, including near-surface energy constraints, suggest a model of Io that features a surface layer of sulfur overlying an active silicate crust. Such a model would imply frequent contact between silicate magma intrusions and the sulfur layer. This contact could produce volcanic plumes driven by high-temperature sulfur vapor. Plumes driven by sulfur vapor meet observationall constraint for a wide range of possible conditions, in contrast to the special conditions required for plume generation by SO2. Characteristics of the two models are compared, and it is suggested that high-resolution infrared radiometry could identify the driving volatile.  相似文献   

16.
Theoretical consideration of the magma vesiculation process under observed and inferred venusian surface conditions suggests that vesicles should form in basaltic melts, especially if CO2 is the primary magmatic volatile. However, the high surface atmospheric pressure ((~90 bars) and density on Venus retard bubble coalescence and disruption sufficiently to make explosive volcanism unlikely. The products of explosive volcanism (fire fountains, convecting eruption clouds, pyroclastic flows, and topography-mantling deposits of ash, spatter, and scoria) should be rare on Venus, and effusive eruptions should dominate. The volume fraction of vesicles in basaltic rocks on Venus are predicted to be less than in chemically similar rocks on Earth. Detection of pyroclastic landforms or eruption products on Venus would indicate either abnormally high volatile contents of Venus magmas (2.5–4 wt%) or different environmental conditions (e.g., lower atmospheric pressure) in previous geologic history.  相似文献   

17.
Many lunar craters greater than 10 km in diam exhibit a variety of morphological characteristics which are not produced by meteorite impact or meteorite erosion. Most such craters are located in or near the margins of the maria. Although some could have resulted from processes such as cauldron resurgence, caldera formation, or ring dike emplacement, most have formed by modification of impact craters by endogenic processes including erosion by flowing lava, fissure volcanism, plutonism and uplift of crater floors along ring fractures of impact origin.  相似文献   

18.
Juxtaposing images of the surface of Titan made by the Huygens probe and photos of the mud volcano region on Earth (the Taman peninsula, the Caucasus) reveals similar geomorphologic features. This has led us to suggest the existence of cryogenic mud-volcanic activity on Titan. The role of liquid methane in supporting this process on Titan can be the same as that of gaseous methane on Earth. For Titan, gas hydrates (hydrates of hydrocarbon gases) and water ice are analogs of terrestrial clay breccia. Note that gas hydrates are stable at P-T conditions typical of Titan. Assuming the existence of mud-volcanic activity on Titan allows us to explain: (i) the general view of the landscape near the Huygens probe landing site, (ii) the chains of bright “islets” noticed during the probe descent, which may be a marker of a tectonic fault line, (iii) the conic shape of the hill in the foreground of the image taken from an altitude of 8 km, (iv) the rounded pebble-like shape of the small solid blocks on the surface of Titan, and (v) the presence of long white strips, each of which seems to diverge at one of the ends (such a picture can be produced by methane wind carrying away the ejecta of a gaseous volcano from its crater).  相似文献   

19.
20.
High quality CCD images obtained at two different observatories in North Italy allowed the identification of four morphological structures near the nuclear region of the comet Ikeya-Zhang (I-Z): haloes, jets, shells and spirals. The interpretation of the nature of these structures has been attempted by means of a comparison of different up-to-date image processing techniques, which led to a single common estimate of the rotation period (p=1.48±0.20 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号