首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The modified increment method has been applied to the calculation of oxygen isotope fractionation factors for hydroxide minerals. The results suggest the following sequence of 18O-enrichment in the common hydroxides: limonite > gibbsite > goethite > brucite > diaspore. The hydroxides are significantly enriched in 18O relative to the corresponding oxides. The sequence of 18O-enrichment in the hydroxides and oxides of trivalent cations is as follows: M(OH)3 > MO(OH) > M2O3. There are also considerable fractionations within the polymorphos of Al(OH)3. The internally consistent fractionation factors for hydroxide–water systems are obtained for the temperature range of 0 to 1200 °C, which are comparable with the data derived from synthesis experiments and natural samples at surficial temperatures. Temperature dependence of oxygen isotope fractionations between goethite, gibbsite, boehmite and diaspore and water are significant enough for the purpose of geothermometry. Thus the hydroxide–water pairs hold great promise of serving as reliable paleothermometers in surficial geological environments. Received: 22 January 1997 / Revised, accepted: 2 June 1997  相似文献   

2.
电气石和水之间的氢同位素分馏   总被引:1,自引:0,他引:1  
钱雅倩  郭吉保 《地球学报》1994,15(Z1):189-196
作者对电气-水体系氢同位素平衡分馏和动力学分馏和动力学分馏开展了实验研究,丰富了羟基矿物氢同位素分馏资料。本文对该研究的实验技术、分析方法作了介绍,并对实验结果进行讨论与国外已有的该方面的资料作了对比。在800-650℃时电气石和水之间氢同位素平衡分馏系数与温度间线性关系为103lna电气石-水=-28.24(106/T2)+2.60;交换速率常数与温度间关系为lnk2=-0.19-6.70(103/T)  相似文献   

3.
The equilibrium hydrogen isotope fractionation factor (α) between kaolinite and water in the temperature range 330 to 0°C is 1000 In αkaol-water = −2.2 × 106T−2 − 7.7. This monotonic expression is based on a combination of experimental data with >75% of exchange and empirical calibrations. The previously proposed and widely accepted complex fractionation expression is considered to reflect the role of surface and intersite fractionation effects in the low percent of exchange experiments(Liu and Epstein, 1984), and incorrect δD water values for the empirical values (Lambert and Epstein, 1980). There is no measurable fractionation between dickite and kaolinite. The temperature dependence of the kaolinite-water hydrogen isotope fractionation factor can probably be used as a model for other phyllosilicate-water systems below 350°C.  相似文献   

4.
The D/H ratios of separated size fractions of clay minerals in two deep sea sediments taken from depths of 30 and 1100cm in a North Pacific Ocean core were measured to investigate the extent of hydrogen isotope exchange between detrital clay minerals and sea water. The D/H ratio of each size fraction of the shallower sample was compared with that of the corresponding size fraction of the deeper sample. No differences were detected between D/H ratios of corresponding size fractions from the two levels in the core except for the <0.1μm size fraction, which makes up only 5% of the sample. Even in this size fraction only about 8–28% D/H exchange is apparent. This is interpreted as indicating that no significant hydrogen isotope exchange between clay minerals and sea water has occurred during the past 2–3 Myr. Therefore information concerning the provenance and mode of formation of detrital clay minerals can be obtained from the D/H ratios of deep sea sediments younger than 2–3 Myr.  相似文献   

5.
The extent of hydrogen and oxygen isotope exchange between clay minerals and water has been measured in the temperature range 100–350° for bomb runs of up to almost 2 years. Hydrogen isotope exchange between water and the clays was demonstrable at 100°. Exchange rates were 3–5 times greater for montmorillonite than for kaolinite or illite and this is attributed to the presence of interlayer water in the montmorillonite structure.Negligible oxygen isotope exchange occurred at these low temperatures. The great disparity in D and O18 exchange rates observed in every experiment demonstrates that hydrogen isotope exchange occurred by a mechanism of proton exchange independent of the slower process of O18 exchange.At 350° kaolinite reacted to form pyrophyllite and diaspore. This was accompanied by essentially complete D exchange but minor O18 exchange and implies that intact structural units in the pyrophyllite were inherited from the kaolinite precursor.  相似文献   

6.
Oxygen isotope fractionations between zoisite and water have been studied at 400–700°C, PH2O = 13.4 kbar, using the three-isotope method described by Matsuhisaet al. (1978) and Matthewset al. (1983a). The zoisite-waier exchange reaction takes place extremely slowly and consequently direct-exchange calibration of equilibrium 18O16O fractionation factors was possible only at 600 and 700°C. Fractionation factors at 400–600°C were determined from samples hydrothermally crystallized from a glass of the anhydrous zoisite composition. At 600°C, both exchange procedures gave identical fractionations within experimental error. Scanning electron microscope studies showed that the zoisite-water exchange reaction occurs largely by solution-precipitation mass-transfer mechanisms. The slow kinetics of zoisite-water exchange may be typical of hydrous silicates, since additional experiments on tremolite-water and chlorite-water exchange also showed very low rates. When the zoisite-water fractionation factors determined in this study are combined with the quartz and albite-water data of Matsuhisaet al. (1979) and the calcite-water data of O'Nellet al. (1969), mineral-pair fractionations are obtained for which the coefficients “A” in the equation 1000 In α = A × 106T?2 are:
  相似文献   

7.
Oxygen isotope fractionation between rutile and water   总被引:1,自引:0,他引:1  
Synthetic rutile-water fractionations (1000 ln α) at 775, 675, and 575° C were found to be ?2.8, ?3.5, and ?4.8, respectively. Partial exchange experiments with natural rutile at 575° C and with synthetic rutile at 475° C failed to yield reliable fractionations. Isotopic fractionation within the range 575–775° C may be expressed as follows: 1 $$1000\ln \alpha ({\rm T}i{\rm O}_{2 } - H_2 O) = - 4.1 \frac{{10^6 }}{{T_{k^2 } }} + 0.96$$ . Combined with previously determined quartz-water fractionations, the above data permit calibration of the quartz-rutile geothermometer: 1 $$1000\ln \alpha ({\text{S}}i{\rm O}_{2 } - Ti{\rm O}_{2 } ) = 6.6 \frac{{10^6 }}{{T_{k^2 } }} - 2.9$$ . When applied to B-type eclogites from Europe, as an example, the latter equation yields a mean equilibration temperature of 565° C.  相似文献   

8.
The increment method is adopted to calculate oxygen isotope fractionation factors for mantle minerals, particularly for the polymorphic phases of MgSiO3 and Mg2SiO4. The results predict the following sequence of 18O-enrichment: pyroxene (Mg,Fe,Ca)2Si2O6>olivine (Mg,Fe)2SiO4>spinel (Mg,Fe)2SiO4>ilmenite (Mg,Fe, Ca)SiO3>perovskite (Mg,Fe,Ca)SiO3. The calculated fractionations for the calcite-perovskite (CaTiO3) system are in excellent agreement with experimental calibrations. If there would be complete isotopic equilibration in the mantle, the spinel-structured silicates in the transition zone are predicted to be enriched in 18O relative to the perovskite-structured silicates in the lower mantle but depleted in 18O relative to olivines and pyroxenes in the upper mantle. The oxygen isotope layering of the mantle would essentially result from differences in the chemical composition and crystal structure of mineral phases at different mantle depths. Assuming isotopic equilibrium on a whole earth scale, the chemical structure of the Earth's interior can be described by the following sequence of 18O-enrichment: uppr crust>lower crust>upper mantle>transition zone>lower mantle >core.  相似文献   

9.
The hydrogen isotope fractionation between kaolinite and water   总被引:1,自引:0,他引:1  
Hydrogen isotope fractionation factors between kaolinite and water were determined at temperatures between 200° and 352°C. Five-gram samples of kaolinite were heated in contact with 8-mg samples of water in sealed glass reaction tubes. Under these conditions the approach to equilibrium with time will be reflected primarily in the change of the δ D in the water. Also the δ D of the hydrogen in the kaolinite will be relatively constant, subject to minor corrections. About seventy sealed vessels were heated for various times at various temperatures. During four months of heating, ~ 25% of kaolinite hydrogen exchanged with the water at 200°C, whereas 100% exchanged at 352°C. The α-values were estimated assuming equilibrium between exchanged kaolinite and water. The 103lnα-values are estimated to be ?20, ?15, ?6 and +7 for 352°, 300°, 250° and 200°C, respectively, which are in approximate agreement with reported values previously determined at 400°C using conventional methods as well as those estimated from kaolinite in hydrothermally active systems. The curve representing the relationship between the hydrogen isotope fractionation factor for the kaolinite-water system and temperatures between 400° and 25°C is not monotonic but rather has a maximum at 200°C.  相似文献   

10.
11.
There are no reported experimental data on hydrogen isotope fractionation between muscovite and water at low temperatures (< 400 °C). A fractionation curve derived from extrapolation of the high temperature calibration of Suzuoki and Epstein (1976) yields 20 to 40%. higher D values than the empirical graphical calibration of Bowers and Taylor (1985) at temperatures of about 300 °C. Data from natural hydrothermal systems formed at approximately 300 °C, where D analyses are available both from fluid inclusions and alteration muscovite/sericite, support the Bowers and Taylor (1985) calibration, thus indicating smaller fractionation factors at these temperatures than suggested by extrapolations from high-temperature experimental results.  相似文献   

12.
中酸性硅酸盐熔体-水体系氢同位素分馏的压力效应   总被引:1,自引:0,他引:1  
对0.2-2000MPa条件下钠长石熔体,钾长石熔体以及0.2-150MPa条件下流纹岩熔体--水体系的氢同位素分馏实验数据进行了筹压拟合,发现硅酸盐熔体与水之间的氢同位素分馏存在显著的压力效应,在800,1000和1200度条件下对钠长石熔体,水体系和流夺熔体--水体系氢同位素分馏压力方程进行的等温拟合表明,只有在特定的压力条件下才可以用钠长石熔体-水体系来近似流纹岩熔体--水体系的氢同位素分馏行为,当压力超过临界值时,硅酸盐熔体-水体系氢同位素分馏会发生变化,本文拟合的硅酸盐熔体-水体系氢同位素分馏等值线在P-T空间的形态变化特征与矿物-水体系存在较大差异,依据流纹岩熔体与水之间氢同位素分馏的压力效应,成功地模拟了美国西部Glass Creek流纹岩δD值和水含量变化规律与岩浆去气之间的关系。  相似文献   

13.
Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, −23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.  相似文献   

14.
The extent of oxygen isotopic exchange between detrital clay minerals and sea water was investigated by analyzing O18O16 ratios of separated fine-grained size fractions of deep-sea sediments from three North Pacific ocean cores. Isotopic results were interpreted according to models based on the assumption that the extent of isotopic exchange should increase with decreasing particle size and increasing time of exchange between the sediment and sea water. The data indicate that information concerning the provenance and mode of formation of detrital clay minerals can be obtained from the O18O16 ratios of the coarser-than-0.1 μm fraction of deep-sea sediments younger than several million years and the finer-than-0.1 μm fraction of deep-sea sediments younger than several tens of thousands of years. Furthermore, if the extent of chemical reaction between detrital clays and sea water is similar to the extent of oxygen isotopic exchange, such reaction may be important in regulating the chemistry of sea water.  相似文献   

15.
The equilibrium fractionation factors between mirabilite (Na2SO4·10H2O) and saturated sodium sulphate solution at 25°C and 0°C and between ice and 2·5 molal sodium chloride solution at ?10°C have been measured. For mirabilite, the deuterium factors are 1·017 and 1·019, and the oxygen-18 factors are 1·0014 and 1·0020 at 25°C and 0°C, respectively. For ice, the factors are 1·024 for deuterium and 1·0022 for oxygen-18 at ?10°C. These fractionation factors are used to estimate the fractionation factors between ice and mirabilite and concentrated sea water at ?10°C. It is concluded that the average binding strengths of hydrogen in ice and mirabilite are very similar.  相似文献   

16.
The experimental results of Hamza and Epstein mark internal oxygen isotope fractionations of hydrosilicates as potential single-mineral thermometers. In this study methodical investigations were made to determine the oxygen isotope ratios of hydroxyl groups in silicate minerals. As a reference material a commercial kaolinite was examined by vacuum extraction and by use of a modified partial fluorination technique first deseribed by Hamza and Epstein. The concordance of the results argue against oxygen isotope fractionation during dehydroxylation. Consequently, vacuum extraction can be used to determine the internal fractionation of minerals, which contain no ferrous iron. For calibration of the internal oxygen isotope fractionation, hydrothermally formed illites from the Lone Gull uranium deposit in Canada and from the Leuggern exploration drill site in Switzerland were investigated. Formation temperatures of the hydrothermal mineralization were estimated by mineral paragenesis, illite crystallinity and by oxygen isotope fractionations on coexisting mineral phases. the oxygen isotope fractionation between oxygen of different sites in several selected illites from both regions has been analysed. The results indicate a linear correlation between the illite-OH oxygen isotope fractionation and temperature. The fractionation can be expressed by the following equation:
AbCcZo
Q0.500.501.56
Ab0.001.06
Cc1.06
  相似文献   

17.
《Organic Geochemistry》1987,11(2):115-119
This paper presents C and H isotope compositions of compounds involved in methane production by pure cultures of Methanobacterium formicicum. The C isotope compositions of the methane produced and of the residual CO2 are compared to data observed in natural conditions in marine sediments. This comparison leads to further evidence that CO2 reduction is an important mechanism for microbial generation of methane in deep marine sediments. The H isotope compositions show involvment of the water hydrogen into methane as well as hydrogen exchange between water and molecular hydrogen in the course of CO2 reduction. A mechanism is proposed as a possible explanation for the data obtained involving conjugated reactions of CO2-reduction and enzymatic reduction of water.  相似文献   

18.
Hydrogen isotope composition of deep-seated water   总被引:3,自引:0,他引:3  
D/H ratios of phlogopites and amphiboles from rocks of possible mantle origin and also those of water from (glass?) inclusions in olivines of the olivine nodule and peridotites have been determined. The mantle water seems to have aδD value of —85±10‰ on the basis of results of inclusions in the nodule-olivine.  相似文献   

19.
文石—水体系氧同位素分馏机理的实验研究   总被引:3,自引:1,他引:3  
周根陶  郑永飞 《地球化学》1999,28(6):521-533
采用“附晶生长法”分别在50和70℃下合成文石下矿物,获得了两种不同的文石与水之间的氧同位素分馏关系。结果证明,文石与水之间氧同位素分馏的化学动力学机 为两步:(1)碳酸根与水之间进行氧同位素交换和平衡,即:「C^16O3」^^3-+2H2^18O=「C^18O3^16O」^2-+2H2O16O;(2)与水平衡以后的「CO2」^2-离子与Ca^2+结合生成文石,即:Ca^2++_「C^18O2^1  相似文献   

20.
Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO2 degassing, passive CO2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±∼0.13‰ and thus insignificant. Because the presence of Mg2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO3 solutions under these experimental conditions, the influence of the total Mg2+ concentration (up to ∼0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg2+ but a noticeable isotope salt effect was observed at ∼0.9 molal total Mg2+.On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C:
1000lnαaragonite-water=17.88±0.13(103/T)-31.14±0.46  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号