首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
 Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ∼7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts ( >∼60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents. Received: 15 June 1995 / Accepted: 13 December 1995  相似文献   

2.
Stephen Foley 《Lithos》1992,28(3-6):187-204
The source mineralogy and conditions of origin of the three main groups of ultrapotassic rocks are outlined by combining experimental constraints and an abstraction of evidence from whole-rock chemistry (including volatiles), tectonic setting and xenolith contents. Lamproites originate from a depleted source rock which was strongly re-enriched at a later stage, thus producing mica-harzburgite. Melting conditions are H2O-rich and in most cases strongly reducing. Kamafugites originate from a clinopyroxene-reich source, also with abundant mica, in more oxidizing, CO2-rich conditions. Members of the third group form in a relatively fertile spinel-peridotite also containing abundant clinopyroxene and mica. Contrasting effects of variation in (i) pressure of melting and (ii) oxygen fugacity, emphasize the importance of these parameters in the sources of ultrapotassic rocks.

Currently popular models for the origin of ultrapotassic melts by partial melting of phlogopite-bearing lherzolite are inconsistent with the now extensive array of liquidus experimental results on ultapotassic rock compositions. The discrepancy between partial melting models and liquidus results is attributed to the implicit, invalid assumption in the partial melting models that incompatible elements are homegeneously distributed on a large scale. Non-peridotitic assemblages rich in mica and pyroxenes which may be completely free of olivine must have an important role in the genesis of potassic rocks as spatially restricted components of inhomogeneous source regions.  相似文献   


3.
Complex multi-stage models involving silicate, hydrous and carbonatemelts of distinct provenance have been invoked to explain themetasomatism observed in mantle rocks. In contrast, relativelysimple models requiring polybaric crystallization of alkalinesilicate melts have been proposed to explain the occurrenceof veined mantle rocks. To address the spatial and temporalrelationships between veins and wall-rocks, a sequence of drillcores was obtained from Lherz, France. In outcrop the vein (amphibole–garnetpyroxenite dyke) is spatially associated with hornblendite veinlets(lherzite), and proximal amphibole-bearing and distal apatite-bearingwall-rock peridotite. Considerable elemental and isotopic heterogeneityexists in these wall-rock peridotites, in many instances equivalentto, or greater than, that observed in mantle xenoliths fromworldwide localities. A single stage of reactive porous flowbest explains the elemental and isotopic heterogeneity in thewall-rock. In essence it is proposed that emplacement of thesilicate melt (dyke) was inextricably linked to chromatographicfractionation/reaction of derivatives which led to the coexistence,in space and time, of silicate, hydrous and carbonate melts.This model elegantly and simply describes the formation of complexmetasomatic aureoles around mantle veins and negates the need,in the case of basalt-hosted (and kimberlite-hosted) xenoliths,for complex multi-stage models involving several episodes ofmelt influx with each melt being of different provenance. KEY WORDS: mantle metasomatism; trace-element enrichment; isotopic contamination; wall-rock peridotite; Lherz peridotite  相似文献   

4.
The Radicofani Volcano is characterised by few lava flows, a cinder cone and a denudated neck, and is part of the Tuscan Magmatic Province, the northernmost volcanic region of the Italian peninsula. In spite of the short time span of activity, a large time-dependant chemical and isotopic variability is observed. Most of the rocks of the Radicofani volcano are ultrapotassic shoshonites associated to younger basaltic andesites, found at the bottom of the neck. K2O contents are positively correlated with trace element and isotopic variations. Shoshonitic and high-K calc-alkaline rocks of the Radicofani volcano are significantly different from shoshonites occurring in association with leucite-bearing ultrapotassic rocks in the southernmost portion of the Roman Magmatic Province. The studied rocks are characterised by high, but variable, levels of incompatible trace elements with a subduction-related signature, with troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.71333 to 0.71588, 143Nd/144Nd ranges from 0.512050 to 0.512183, while the lead isotope ratios vary between 18.672 and 18.716 for 206Pb/204Pb, 15.665 to 15.696 for 207Pb/204Pb, and 39.981 to 39.081 for 208Pb/204Pb. Ultrapotassic shoshonites show the highest incompatible trace element contents coupled with the highest 87Sr/86Sr and the lowest 143Nd/144Nd. On the basis of geochemical and isotopic signatures it is argued that magmas were generated in a modified lithospheric peridotitic source containing metasomatic veins generated by K-rich melts from recycled sediments within the mantle via subduction. A further metasomatic event generated by slab-derived fluids pervasively enriched the peridotitic source. Partial melting of the veins produced leucite-free ultrapotassic magmas (i.e. lamproite), and was triggered by rising of the isotherms after the orogenic front migrated eastward in the Italian Peninsula. Further rise of the isotherms induced larger degrees of partial melting inducing melting of the surrounding wall peridotite. The variation of the degree of partial melting of such a heterogeneous peridotitic source produced a wide spectrum of magma compositions, which mimic a mixing line between two components: ultrapotassic magma from partial melting of the metasomatic vein and a basaltic andesitic magma from partial melting of the surrounding peridotite.  相似文献   

5.
       根据大陆下地壳的成分、含水基性岩体系部分熔融的基本原理和实验岩石学资料,本文对大陆下地壳的熔融机制展 开了讨论,并在此基础上对比实验熔体与大别山C 型埃达克岩的成分,进而探讨约束源岩成分、熔融的温压条件和部分熔 融程度。研究结果表明,大陆下地壳总体上是中- 基性(SiO2 50%~60% )和含少量水的,在缺乏流体相条件下伴随含水 矿物脱水的部分熔融是下地壳产生含水长英质熔体和无水残留体的主要机制。角闪岩在中等压力下(1.0~1.2 GPa,相当于 35~40 km)理论上能够产生石榴石含量超过~20% 的熔融残余,从而使得与之平衡的长英质熔体具有低Y,高Sr/Y 和La/Yb 比值等埃达克岩特征。基于水活度模型和变质基性岩p -t 相图的估算显示,含有40%~60% 角闪石的源岩(含水0.8%~1.2%) 在~950 ℃能够得到最大为15%~20% 的熔体,该熔体分数满足熔体分离的要求。大别山C型埃达克岩主要为高钾钙碱性系 列(K2O 3.5%~5%),与实验熔体成分的对比可知,其无法由低钾源岩在合理的部分熔融程度形成。根据钾在角闪岩部分熔 融过程过表现为强不相容元素的原理,利用合理假设的残余体组合得到的分配系数,估算K2O 含量为~1% 的源岩在熔融程 度为15%~20% 的情况下能够得到类似大别山C 型埃达克岩成分的熔体。  相似文献   

6.
This paper provides important insights into the generation, extraction and crystallization of clast-laden impact melt rocks from the Araguainha impact structure, central Brazil. Despite the mixed nature of the Araguainha target rocks (comprising a 2 km thick sequence of sedimentary rocks and underlying granitic basement), the exposed melt bodies are characterised by an alkali-rich granitic matrix embedding mineral and rock fragments derived only from the target granite. The melt rocks occur in the form of a massive impact melt sheet overlying the eroded central uplift structure, and as melt veins in the granite of the core of the central uplift. Bulk-rock major and trace element data (including platinum group elements) indicate that the precursor melts were generated locally, principally by partial melting of the target granite, without any contribution from the sedimentary sequence or the projectile. The dense network of melt veins was formed in isolation, by selective melting of plagioclase and alkali feldspar within the granite target. Plagioclase and alkali feldspar melted discretely and congruently, producing domains in the matrix of the melt veins, which closely match the stoichiometry of these minerals. The compositionally discrete initial melt phases migrated through a dense network of microfractures before being assembled into larger melt veins. Freezing of the melt veins was substantially fast, and the melt components were quenched in the form of alkali-feldspar and plagioclase schlieren in the matrix of the melt veins. The overlying impact melt rock is, in contrast, characterised by a granophyric matrix consisting of albite, sanidine, quartz, biotite and chlorite. In this case, melt components appear to have been more mobile and to have mixed completely to form a granitic parental melt. We relate the melting of the minerals to post-shock temperatures that exceeded the melting point of feldspars.  相似文献   

7.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

8.
Melting experiments on ultramafic rocks rich in the hydrous minerals phlogopite or phlogopite + K-richterite, some including 5% of accessory phases, have been conducted at 15 and 50 kbar. The assemblages represent probable source components that contribute to melts in cratonic regions, but whose melt compositions are poorly known. A main series of starting compositions based on MARID xenoliths consisted of a third each of clinopyroxene (CPX), phlogopite (PHL) and K-richterite (KR) with or without 5% ilmenite, rutile or apatite. Additional experiments were run without KR and with higher proportions of accessory phases. Melt traps were used at near-solidus temperatures to facilitate accurate analysis of well-quenched melts, for which reversal experiments demonstrate equilibrium.Results show that KR melts rapidly and completely within 50 °C of the solidus, so that melts reflect the composition of the amphibole and its melting reaction. Melts have high SiO2 and especially K2O but low CaO and Al2O3 relative to basaltic melts produced from peridotites at similar pressures. They have no counterparts amongst natural rocks, but most closely resemble leucite lamproites at 15 kbar. KR and PHL melt incongruently to form olivine (OL) and CPX at 15 kbar, promoting SiO2 contents of the melt, whereas orthopyroxene OPX is increasingly stable at lower lithosphere pressures, leading to an increase in MgO and decrease in SiO2 in melts, which resemble olivine lamproites. Melts of mica pyroxenites without KR are richer in CaO and Al2O3 and do not resemble lamproites. These experiments show that low CaO and Al2O3 in igneous rocks is not necessarily a sign of a depleted peridotite source. Accessory phases produce melts exceptionally rich in P2O5 or TiO2 depending on the phases present and are unlike any melts seen at the Earth’s surface, but may be important agents of metasomatism seen in xenoliths. The addition of the 5% accessory phases ilmenite, rutile or apatite result in melting temperatures a few ten of degrees lower; at least two of these appear essential to explain the compositions of many alkaline igneous rocks on cratons.Melting temperatures for CPX + PHL + KR mixtures are close to cratonic geotherms at depths > 130 km: minor perturbations of the stable geotherm at >150 km will rapidly lead to 20% melting. Melts of hydrous pyroxenites with a variety of accessory phases will be common initial melts at depth, but will change if reaction with wall-rocks occurs, leading to volcanism that contains chemical components of peridotite even though the temperature in the source region remains well below the melting point of peridotite. At higher temperatures, extensive melting of peridotite will dilute the initial alkaline melts: this is recognizable as alkaline components in basalts and, in extreme cases, alkali picrites. Hydrous pyroxenites are, therefore, components of most mantle-derived igneous rocks: basaltic rocks should not be oversimplified as being purely melts of peridotite or of mixtures of peridotite and dry pyroxenite without hydrous phases.  相似文献   

9.
Melt and fluid inclusions were studied in the minerals of Cenozoic olivine melanephelinites from the Chukchi Peninsula, Russia.The rock contain several generations of olivine phenocrysts varying in composition at mg=0.88~0.77.The phenocrysts bear fluid and melt inclusions recording various stages of melt crystallization in volcanic conduits and shallow magma chambers.Primary fluid inclusions are CO_2-dominated with a density of up to O.93 g/cm~3.All fluid inclusions are partially leaked,which is indicated by haloes of tiny fluid bubbles around large fluid inclusions in minerals.Melt inclusions contain various daughter crystals,which were completely resorbed in thermometric experiments at about 1230℃.Assuming that this temperature corresponds to the entrapment conditions of the CO_2 fluid inclusions,the minimum pressure of the beginning of magma degassing is estimated as 800MPa.Variations in the compositions of homogenized silicate melt inclusions indicate that olivine was the earliest crystalline phase followed by clinopyroxene,nepheline and orthoclase.This sequence is in agreement with the mineralogy of the rocks.The melts are strongly enriched in incompatible trace elements and volatiles(in addition to CO_2,high C1,F,and S contents were detected).There are some differences between the compositions of melts trapped in minerals from different samples.Variations in SiO_2,FeO,and incompatible element contents are probably related to melt generations at various levels in a homogeneous mantle reservoir.  相似文献   

10.
Melilite and wollastonite from the Colle Fabbri stock contain silicate melt and silicate-carbonate inclusions. The homogenization temperatures of silicate inclusions are within the magmatic temperature range of mantle ultrabasic melts: about 1,320?±?15 °С. Their composition is melilititic and evolves to the composition of leucite tephrite and phonolite. The composition of silicate-carbonate inclusions are high SiO2, Ca-rich, enriched in alkalies and are similar to that of inclusions of carbonatite melts in the minerals of melilitolites of other intrusive ultramafic complexes. They are also similar to the compositions of metasomatized travertine covering the melilitolite stock. The presence of primary silicate and silicate-carbonate inclusions evidences that the melilitite magma from which melilitolites of Colle Fabbri crystallized was associated with carbonatite liquid. This liquid was highly fluidized, mobile and aggressive. Actively interacting with overlying travertine, the liquid enriched them with alkalies, aluminosilicates and incompatible elements, which resulted in the equalization of their compositions. Heterogeneous compositional dominions were formed at the contact between melilitolite and wall pelites. In the minerals of these contact facies high-Si melt inclusions of varying composition have been observed. Their occurrence is related to the local assimilation by the high-temperature melilitite magma of pelitic country rocks. The content of incompatible elements in melilitite melts and melilitolites is higher than the mantle norm and they have peculiar indicator ratios, spectra, Eu/Eu* ratio, which suggest a peculiar mantle source.  相似文献   

11.
地幔流体与地球的放气作用   总被引:7,自引:0,他引:7  
地幔流体的形成、聚集和渗透是引起地幔交代作用的主要营力。地幔交代作用发育的强弱决定着所生成岩浆的碱性程度。地幔流体和部分熔融体高度富集不相容元素,它们与亏损地幔的相互作用可以使后者发生LREE和不相容元素的局部富集。通过板块俯冲作用使地球表层的CO2进入地幔,参加地球的碳循环。热点岩浆来源的CO2中含有部分循环的CO2,而大洋中脊玄武岩中的CO2主要是原始地球的CO2。携带CH4和H2O的流体渗透至被俯冲带带入地幔的物质,使碳酸盐化的榴辉岩还原而形成含金刚石的榴辉岩和富水流体,并诱发局部熔融,所形成的熔体以火山喷发的形式上升到地表。地幔岩石中含有大量的流体,它们主要以流体包裹体的形式存在于地幔矿物中。几乎在所有的上地幔环境下形成的矿物中均找到了流体包裹体。包裹体内流体的成分主要是CO2,CH4,H2O及少量H2,N2等。  相似文献   

12.
In this paper, we discuss the formation conditions of rhyolites and results of their interaction with later portions of basic magmas on the basis of the investigation of melt and fluid inclusions in minerals from a rhyolite xenolith and host neovolcanic basalts of the Cleft segment of the Juan de Fuca Ridge. In terms of bulk chemistry and the compositions of melt inclusions in pyroxene and olivine phenocrysts, the basic rocks of the southern part of this segment are typical MOR basalts. Their olivine, clinopyroxene, and plagioclase crystallized at temperatures of 1160–1280°C and a pressure range between 20 and 100 MPa. The xenolith is a leucocratic rock with negligible amounts of mafic minerals, which clearly distinguishes it from the known occurrences of silicic rocks in the rift valleys of MOR. The rhyolite melt crystallized at temperatures of 900–880°C. The final stages of rhyolite melt crystallization at temperatures of 780–800°C were accompanied by the release of a saline aqueous fluid with high chloride contents. Based on the geochemical characteristics of melt inclusions and melting products, it can be suggested that the magmatic melt was produced by melting of metamorphosed oceanic crust within the Cleft segment under the influence sof saline aqueous fluid trapped in the pores and interstices of the rock. The rock represented by the xenolith is a late differentiation product of such melts. The ultimate products of silicic melt fractionation show high volatile contents: H2O > 3.0 wt %, Cl ~ 2.0 wt %, and F ~ 0.1 wt %. The interaction of the xenolith with the host basaltic melt occurred at temperatures equal or slightly higher than those of ferrobasalt melts (1190–1180°C). During ascent the xenolith occurred for a few tens of hours in high-temperature basic magma, and diffusion exchange between the basaltic and silicic melts was very minor.  相似文献   

13.
Phase relations have been determined at 20 kbar and primarily under suprasolidus conditions in the Fe−Ti-free F-bearing K-richterite—phlogopite and K-richterite—apatite systems in order to assess the partitioning of F among phlogopite, K-richterite, apatite, and melt under upper-mantle conditions. Both systems are pseudoternary because they contain forsterite, enstatite and a diopside-rich clinopyroxene from the breakdown of the mica and K-richterite. The F-bearing K-richterite systems have lower minimum melting temperatures than the F-bearing phlogopite —apatite system at the same pressure. However in the systems studied, F in phlogopite appears the most effective component in altering minimum liquid compositions whereas comparison between the present study and previous systems suggests that the presence of P2O5 during melting may result in more K-enriched melts. Variations in the compositions of the F-bearing phases are primarily controlled by the bulk compositions of the end-member minerals and by temperature, although buffering by non-F bearing minerals (e.g. clinopyroxene) may be effective. Distribution coefficients (as wt% ratios) between F-bearing minerals and coexisting liquids have been determined as functions of bulk composition and temperature for products of experiments. Distribution coefficients between K-richterite—liquid, apatite—liquid, and phlogopite—liquid are ≥1 to slightly <1 for most bulk compositions, indicating thatF is generally a compatible element. This conclusion is in agreement with the sequence ofF distribution for similar phases in ultrapotassic rocks. These results preclude F-bearing mineral reservoirs in the mantle, at depths corresponding to 20 kbar, being capable of producing F-enrichment in ultrapotassic magmas, or being effective in redox melting processes. Editorial responsibility: K. Hodges  相似文献   

14.
Clinopyroxene phenocrysts in fergusite from a diatreme in the Dunkel’dyk potassic alkaline complex in the southeastern Pamirs, Tajikistan, and from carbonate veinlets cutting across this rock contain syngenetic carbonate, silicate, and complex melt inclusions. The homogenization of the silicate and carbonate material of the inclusions with the complete dissolution of daughter crystalline phases and fluid in each of them occur simultaneously at 1150?1180°C. The pressures estimated using fluid inclusions and mineral geobarometers were 0.5–0.7 GPa. The behavior of the inclusions during their heating and their geochemistry are in good agreement with the origin of carbonate melts via liquid immiscibility. Carbonatite magma was segregated at the preservation of volatile components (H2O, CO2, F, Cl, and S) in the melt, and this resulted in the crystallization of H2O-rich minerals and carbonates and testifies that the magma was not intensely degassed during its ascent to the surface. The silicate melts are rich in alkalis (up to 4 wt % Na2O and 12 wt % K2O), H2O, F, Cl, and REE (up to 1000 ppm), LREE, Ba, Th, U, Li, B, and Be. The diagrams of the concentrations of incompatible elements of these rocks typically show deep Nb, Ta, and Ti minima, a fact making them similar to the unusual type of ultrapotassic magmas: lamproites of the Mediterranean type. These magmas are thought to be generated in relation to subduction processes, first of all, the fluid transport of various components from a down-going continental crustal slab into overlying levels of the mantle wedge, from which ultrapotassic magmas are presumably derived.  相似文献   

15.
The Planalto da Serra igneous rocks form plugs, necks and dykes of carbonate-rich ultramafic lamprophyres (aillikites and glimmerites with kamafugitic affinity) and carbonatites (alvikites and beforsites). Phlogopite and/or tetraphlogopite, diopside and melanitic garnet are restricted to aillikitic rock-types, whereas pyroclore occurs only in carbonatites. Aillikites and carbonatites are altered to hydrotermalites, having chlorite and serpentine as dominant minerals. Planalto da Serra igneous rock association has kamafugitic affinity (i.e. effusive, ultrapotassic. High LREE/HREE fractionation, incompatible elements data and Sr-Nd isotopes, suggest that the K-ultramafic alkaline and carbonatite rocks originated from a variably metasomatized mantle source enriched in radiogenic Sr. Crustal contamination is negligible or absent. Age values of 600 Ma rule out the geochronological relationship between the investigated intrusions and the Mesozoic alkaline bodies from the Azimuth 125° lineament. The TDM model ages allow to conclude that Planalto da Serra magma is derived from the partial melting of a mantle source metasomatised by K-rich carbonatated melt during the Early to Late Neoproterozoic. On the basis of alkaline magmatism repetitions at 600 Ma and 90–80 Ma we question the subsistence of a stationary mantle plume for so long time.  相似文献   

16.
Pseudotachylite veins have been found in the mylonite zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. They are associated with faults with WNW-ESE to ENE-WSW or NE-SW trends which make a conjugate set, cutting foliations of the host mylonitic rocks with high obliquity. The mylonitic rocks comprise greenschist facies to prehnite-pumpellyite facies mineral assemblages. The mode of occurrence of the pseudotachylite veins indicates that they were generated on surfaces of the faults and were intruded as injection veins along microfractures in the host rocks during brittle deformation in near-surface environments. An analysis of the deformational and metamorphic history of the Hidaka Main Zone suggests that the ambient rock temperature was 200–300° C immediately before the formation of the Hidaka pseudotachylite. Three textural types of veins are distinguished: cryptocrystalline, microcrystalline and glassy. The cryptocrystalline or glassy type often occupies the marginal zones of the microcrystalline-type veins. The microcrystalline type is largely made up of quench microlites of orthopyroxene, clinopyroxene, biotite, plagioclase and opaque minerals with small amounts of amphibole microlites. The interstices of these microlites are occupied by glassy and/or cryptocrystalline materials. The presence of microlites and glasses in the pseudotachylite veins suggests that the pseudotachylites are the products of rapid cooling of silicate melts at depths of less than 5 km. The bulk chemical composition of the pseudotachylite veins is characterized by low SiO2 and a high water content and is very close to that of the host mylonitic rocks. This indicates that the pseudotachylite was formed by virtual total melting of the host rocks with sufficient hydrous mineral phases. Local chemical variation in the glassy parts of the pseudotachylite veins may be due to either crystallization of quench microlites or the disequilibrium nature of melting of mineral fragments and incomplete mixing of the melts. Pyroxene microlites show a crystallization trend from hypersthene through pigeonite to subcalcic augite with unusually high Al contents. The presence of pigeonite and high-Al pyroxene microlites, of hornblende and biotite microlites and rare plagioclase microlites may indicate the high temperature and high water content of the melt which formed the pseudotachylite veins. The melt temperatures were estimated to be up to 1100° C using a two-pyroxene geothermometer. Using published data relating water solubilities in high-temperature andesitic magmas to pressure, a depth estimate of about 4 km is inferred for the Hidaka pseudotachylites. Evidence derived from pseudotachylites in the Hidaka metamorphic belt supports the conclusion that pseudotachylite is formed by frictional melting along fault surfaces at shallow depths from rocks containing hydrous minerals.  相似文献   

17.
山东五莲七宝山地区早白垩世的碱性侵入岩位于火山机构的中央部位,该岩体具有高Ba-Sr含量、高Nb/Ta和Zr/Hf比、低Ti/Eu比等特征,前人的研究指出其起源于岩石圈地幔。然而,该侵入体中的岩性与成分变化所反映的深部动力学过程尚未理清。本文对七宝山二长辉长岩和两类辉石二长岩开展了详细的矿物学和岩石地球化学研究,识别出钠质和钾质两类钾玄质岩石系列。该套碱性中基性侵入岩具有富碱、富轻稀土和富大离子亲石元素的特征,同时具有高的(La/Yb)N和(Gd/Yb)N值。碱性侵入岩中两类单斜辉石和两类斜长石作为再循环晶,记录了不同批次岩浆/熔体的混合,这些矿物组分和全岩成分共同约束了岩浆的起源与演化过程。结合前人的地球化学资料,本文指出七宝山碱性侵入岩的源区是曾受到沉积物交代的富集地幔,源区存在金云母脉体和角闪石脉体。上述脉体连同周围的地幔橄榄岩共同发生部分熔融,形成原生的碱性熔体。七宝山碱性侵入岩显示高的Nb/Ta和Zr/Hf比、低的Ti/Eu比,同时在微量元素蜘蛛图上呈现Ti*和Hf*的负异常,结合高稀土单斜辉石平衡熔体的属性,共同指示了碳酸盐熔体组分对该套碱性侵入岩的形成发挥了重要作用。钠质系列与钾质系列岩石反映了源区富碱矿物相类型相对贡献量的差异,即钠质为主的碱性岩反映源区角闪石的贡献更大,而钾质为主的碱性岩反映源区金云母的贡献占优势。此外,碱性侵入岩中的钾质系列具有异常高的Rb-Zr-Hf-U含量,很可能反映了源区在部分熔融过程中热液锆石熔解后形成的熔体加入到了钾质岩浆房内。本研究强调了碳酸盐熔体组分对高Nb/Ta碱性中基性的形成发挥着重要作用,亦强调了热液锆石的熔解加入导致岩浆具有高Zr-Hf-U含量的特征。  相似文献   

18.
Tholeiites accompanying a majority of alkali basalts are restricted to the highly productive central part of the CECV plume activity in Vogelsberg and Hessian Depression. They mainly occur as quartz tholeiites which according to experiments of partial melting and material balances are products of olivine tholeiitic primary melts. The differentiation from olivine to quartz tholeiitic melts took place in lower crustal magma chambers where olivine tholeiitic melt intruded due to a density comparable with that of the country rocks. The fractionation due to separation of olivine and some clinopyroxene caused contamination of tholeiite magmas by tonalitic partial melts from the wall rocks of the magma chambers. The latter process is indicated by relatively high Rb, K and Pb and low Nb concentrations and by Nd, Sr and Pb isotopes. Contaminating crustal melts, which roughly attained a proportion of 10%, contained very low 143Nd/144Nd ratios from a Nd/Sm fractionation as old as 2.6 Ga. This is the first evidence from mafic rocks of this high age in the lower crust beneath Central Europe. Modelling with incompatible elements allows to recognize olivine tholeiites as products of about 1% partial melting of plume rocks consisting of 35% primitive and 65% depleted mantle materials. The production of tholeiites other than alkali basalts is restricted to the highest plume activity and the largest fraction of MORB type source rocks. Received: 10 December 1999 / Accepted: 23 June 2000  相似文献   

19.
This paper presents detailed SHRIMP zircon U–Pb chronology, mineral chemistry, major and trace element, and Sr–Nd–Hf isotope geochemistry of the Datong pluton and its quenched enclaves from the western Kunlun orogen, northwest China, in an attempt to achieve a better understanding on the origin of diverse arc magmas. The Datong host granitoids are intermediate to acid in composition (SiO2?=?57.5?~?73.1 wt.%), and exhibit high-K calc-alkaline to shoshonitic affinities. The quenched enclaves are silica-rich ultrapotassic rocks. Detailed SHRIMP zircon U–Pb dating indicates that the Datong pluton was emplaced in Ordovician time (473.4–447.7 Ma), which places the Datong pluton in an active continental margin setting, rather than a syn-collision setting of Early Silurian age. The Datong host granitoids were derived by partial melting of subducted sediments, with the subsequent melt interacting with the overlying mantle wedge during its ascent. Partial melting of the veined mantle wedge hybridized by sediment-derived melts generated the silica-rich ultrapotassic magma, which was injected into the Datong granitoid magma chamber and quenched, resulting in enclaves hosted by granitoids. This contribution provides evidence that arc magmas can be derived directly by partial melting of subducted sediments, which is helpful to further understand the origin of diverse arc magmas.  相似文献   

20.
A. D. Edgar  D. Vukadinovic 《Lithos》1992,28(3-6):205-220
The contributions of experimental studies pertinent to ultrapotassic rocks of Groups I (lamproites) and II (kamafugites and related rocks) are discussed in terms of synthetic systems, ultrapotassic rock compositions, experiments on characteristic minerals in these rocks and experiments designed to model mantle metasomatism. These studies indicate that the majority of ultrapotassic magmas are derived by partial melting of a metasomatically enriched mantle source at depths of 100 km or greater, and under fluid conditions represented by the C---O---H system with fluorine that may be reduced or oxidized relative to other compositions. Many lamproitic magmas may be derived from a phlogopite-harzburgite with volatiles that are predominantly H2O and F1 whereas kamafugitic type ultrapotassic magmas may be products of partial melts of a more wehrlitic mantle source in which the main volatiles are H2O, CO2 and possibly F. Experimental and theoretical considerations of mantle metasomatism suggest that it occurs at of fO2 in the range of the FMQ buffer. Metasomatism involves low density mantle fluids (melts?) in which H2O and CO2 are the important volatiles, buffered by amphibole, phlogopite and carbonates. Results of recent experiments suggest that the reactions causing metasomatism may be decoupled and cyclic and occur at different depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号