首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study is based on a set of lavas and crosscutting dikes collected by dives along detailed vertical transects on the northern flank of the western part of the Blanco Transform Fault, Northeast Pacific. The studied area consists of a small basin, the Western Blanco Depression (WBD), extending from the southern end of the Juan de Fuca ridge to a pseudofault trace 60 km eastward. The Northern Scarp of the WBD comprises a volcanic unit overlying a sheeted-dike complex. Major and trace element data, coupled with Sr–Nd isotope ratios, reveal a two-component mantle source, composed by an isotopically depleted matrix variably veined by more enriched material. One chemical group (NS2), indistinguishable from the other Northern Scarp samples on the basis of trace element data, has an unusually depleted isotopic composition typical of a nearly pure mantle end-member. Some cogenetic samples of the Northern Scarp have been used to constrain the differentiation modalities. Anorthite and MgO content profiles in plagioclase xenocrysts and phenocrysts reveal (i) the existence of H2O-bearing evolved melts in the mushy zones and (ii) the occurrence of mixing process between these melts and anhydrous mafic liquids. The hydration is supported by other petrographic features such as high magmatic fO2 values, calculated from Fe–Ti oxide pairs, and the presence of pyroxene inclusions in plagioclase phenocrysts. Mixing, consistent with the existence of Ni-rich ferrobasalts, is interpreted to be the consequence of the reservoir refilling by mafic liquids (Mg# = 70). These petrological and geochemical evidences are combined with the evolution of Mg# with depth to suggest a periodic open-system magma chamber evolution beneath the southern end of the Juan de Fuca ridge.  相似文献   

2.
李旺  马绪宣  邱亮  司家亮  刘栋梁 《岩石学报》2023,39(12):3641-3660

藏南冈底斯岩浆带经历了中生代俯冲-增生造山作用和新生代碰撞造山作用,是研究大陆地壳生长与演化的理想场所。位于冈底斯岩浆带中段的早始新世曲水岩基,主要由花岗岩、花岗闪长岩、闪长岩及辉长岩等组成。前人已经在年代学、地球化学等方面对曲水岩基进行了大量研究。然而,对于岩基的形成是否由岩浆补给控制及其详细过程的研究还较为薄弱。花岗闪长质岩体中暗色岩浆包体特殊的产出状态,如包体墙和弥散状分布的包体等,显示岩浆补给在岩基形成过程中发挥了重要作用。包体中发育斜长石主晶包裹角闪石等客晶的嵌晶结构。本文聚焦包体斜长石的嵌晶结构及客晶矿物(如角闪石),结合背散射图像、矿物能谱扫描与矿物电子探针分析,以追踪曲水岩基形成期间的岩浆补给过程。计算结果显示客晶角闪石的结晶温度与压力最高(783~853℃、0.23~0.45GPa),包体基质角闪石次之(781~808℃、0.21~0.31GPa),花岗闪长质寄主岩中角闪石最低(769~802℃、0.18~0.26GPa)。此外,发育嵌晶结构的斜长石具有明显的成分环带,其偏钠质的核部指示了晶粥体的存在。本研究初步构建了岩浆补给模型与嵌晶结构的形成模型。镁铁质岩浆沿长英质晶粥体下部裂隙上升并淬火结晶大量小颗粒角闪石,随后进入晶粥体上部贫晶熔体中破碎成为小的岩浆滴。岩浆滴捕掳晶粥体中的斜长石,继续生长的斜长石包裹结晶于深部的角闪石而形成嵌晶结构。

  相似文献   

3.
Granodiorite from the Gęsiniec Intrusion, Strzelin Crystalline Massif, SW Poland contains complexly zoned plagioclases. Five chemically and structurally distinct zones can be correlated among crystals: ‘cores’ (25–35% An), inner mantles (40–45% An), outer mantles (40–25% An), resorption zones (35–50% An) and rims (35–30% An). Good structural and chemical (major and trace elements) correlation of zones between crystals indicates that zonation was produced by changes in conditions of crystallization on a magma chamber scale. Plagioclase, being the liquidus phase, records a time span from the beginning of crystallization to emplacement and rapid cooling of granodiorite as thin dykes.

Crystallization began with the formation of inner mantles. The paucity and different sizes of inner mantles suggests slow crystallization in high temperature magma. Normally zoned inner mantles were formed under increasing undercooling. Compositional trends in mantles suggest closed system crystallization.

The major resorption zones were caused by injection of less evolved magma as indicated by the strontium increase in plagioclase. The injection triggered a rapid rise of magma and plagioclase crystals facilitating mixing but also inducing fast, kinetically controlled growth of complex multiple, oscillatory zonation within resorption zones. The ascent of magma caused decompression melting of plagioclase and produced melt inclusions within inner mantles—the ‘cores’. The decompression range is estimated at a minimum of 2 kbar. Emplacement of granodiorite as thin dykes allow rapid cooling and preservation of magmatic zonation in plagioclases. Melt inclusions crystallized completely during post-magmatic cooling.

The zonation styles of plutonic plagioclase differ markedly from volcanic ones suggesting different magma evolution. Zones in plutonic plagioclase are well correlated indicating crystallization in quiescent magma where crystals accumulation and compositional magma stratification may occur. Crystals probably did not travel between different regimes. Resorption occurred but as single albeit complex episodes. Good correlation of zones in plutonic plagioclases allows a distinction between the main processes controlling zonation and superimposed kinetic effects.  相似文献   


4.
Axel Mü  ller  Karel Breiter  Reimar Seltmann  Zolt  n P  cskay 《Lithos》2005,80(1-4):201-227
Zoned quartz and feldspar phenocrysts of the Upper Carboniferous eastern Erzgebirge volcano-plutonic complex were studied by cathodoluminescence and minor and trace element profiling. The results verify the suitability of quartz and feldspar phenocrysts as recorders of differentiation trends, magma mixing and recharge events, and suggest that much heterogeneity in plutonic systems may be overlooked on a whole-rock scale. Multiple resorption surfaces and zones, element concentration steps in zoned quartz (Ti) and feldspar phenocrysts (anorthite content, Ba, Sr), and plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the eastern Erzgebirge volcano-plutonic complex. Generally, feldspar appears to be sensitive to the physicochemical changes of the melt, whereas quartz phenocrysts are more stable and can survive a longer period of evolution and final effusion of silicic magmas. The regional distribution of mixing-compatible textures suggests that magma mingling and mixing was a major process in the evolution of these late-Variscan granites and associated volcanic rocks.

Quartz phenocrysts from 14 magmatic phases of the eastern Erzgebirge volcano-plutonic complex provide information on the relative timing of different mixing processes, storage and recharge, allowing a model for the distribution of magma reservoirs in space and time. At least two levels of magma storage are envisioned: deep reservoirs between 24 and 17 km (the crystallisation level of quartz phenocrysts) and subvolcanic reservoirs between 13 and 6 km. Deflation of the shallow reservoirs during the extrusion of the Teplice rhyolites triggered the formation of the Altenberg-Teplice caldera above the eastern Erzgebirge volcano-plutonic complex. The deep magma reservoir of the Teplice rhyolite also has a genetic relationship to the younger mineralised A-type granites, as indicated by quartz phenocryst populations. The pre-caldera biotite granites and the rhyodacitic Schönfeld volcanic rocks represent temporally and spatially separate magma sources. However, the deep magma reservoir of both is assumed to have been at a depth of 24–17 km. The drastic chemical contrast between the pre-caldera Schönfeld (Westfalian B–C) and the syn-caldera Teplice (Westfalian C–D) volcanic rocks is related to the change from late-orogenic geotectonic environment to post-orogenic faulting, and is considered an important chronostratigraphic marker.  相似文献   


5.
The lower-crustal rocks of the Kohistan complex (northern Pakistan) are mostly composed of metabasic rocks such as pyroxene granulites, garnet granulites and amphibolites. We have investigated P–T trajectories of the relic two-pyroxene granulites, which are the protolith of the amphibolites within the Kamila amphibolite belt. Aluminous pyroxene retains igneous textures such as exsolution lamellae developed in the core. The significant amount of Al in clinopyroxene is buffered by breakdown reactions of plagioclase accompanied by film-like quartz as a product at grain boundaries between plagioclase and clinopyroxene. Distinct Al zoning profiles are preserved in pyroxene with exsolution lamellae in the core and in plagioclase adjacent to clinopyroxene in pyroxene granulites. In the northern part of the Kamila amphibolite belt, Al in clinopyroxene increases towards the rim and abruptly decreases at the outer rim, and anorthite in plagioclase decreases towards the rim and abruptly increases near the grain boundary between plagioclase and clinopyroxene. In the southern part of the Kamila amphibolite belt, Al in clinopyroxene and anorthite in plagioclase simply increase towards the margins of the grains. The anorthite zoning in plagioclase is in agreement with the zoning profiles of Ca-Tschermaks and jadeite components inferred from variations of Al, Na, Ti and Fe3+ in clinopyroxene. Assuming that the growth surface between them was in equilibrium, geothermobarometry based on Al zoning in clinopyroxene coexisting with plagioclase indicates that metamorphic pressures significantly increased with increasing temperature under granulite facies metamorphism. The peak of granulite facies metamorphism occurred at conditions of about 800 °C and 800–1100 MPa. These prograde P–T paths represent a crustal thickening process of the Kohistan arc during the Early to Middle Cretaceous. The crustal thickening of the Kohistan arc was caused by accretion of basaltic magma at mid-crustal depths.  相似文献   

6.
ABSTRACT

Geothermal exploration in the Central Andean Volcanic Zone (CAVZ) focuses on heat capacities of known geothermal systems, yet the role of faults, veins, fractures and folds on the evolution and migration of fluids is far from complete. Here, we present a compilation of He and Sr isotope data and newly generated structural maps to examine if particular tectonic configurations are associated with fluids migrating from different crustal levels. Accordingly, we defined three tectono-geothermal environments (T1–T3) depicting specific structural arrangements and spatial relation with geothermal and volcanic manifestations. T1 is dominated by left-lateral strike-slip NW-striking faults, and geothermal and volcanic manifestations occur along the traces of these structures. T2 is dominated by N-striking thrust faults and parallel fault-propagated folds, cut and displaced by NW-striking faults. Here, geothermal manifestations occur at fault intersections and at fold hinges. T3 is defined by left-lateral/normal NW-striking faults, with geothermal and volcanic manifestations lying along fault traces. Each tectono-geothermal environment yields distinctive isotope ratios and geothermal reservoir temperatures. T1 shows high helium and low strontium ratios, and temperatures between 220° and 310°C. T3 shows low helium and high strontium ratios and temperatures between 260° and 320°C. T2 isotope ratios fall between T1 and T3, with lowest (130°-250°C) reservoir temperatures. We argue that these particular isotope signatures are due to a structural control on reservoir location and orientation. The orientation of the fracture mesh genetically associated with each tectono-geothermal environment is a first-order control on the migration pathway of fluids. Our model shows that T1 allows fluxing of deeper fluids, T2 promotes storage and favors longer residence times and T3 enhances subvertical fluid migration. Results here help to explain the evolution of geothermal systems in a wider context, including fault systems and Sr and He isotope variations, thus providing a framework for geothermal exploration in the CAVZ.  相似文献   

7.
We document the mineralogical and geochemical composition of tephra layers identified in the late Quaternary sediments of Puyehue Lake (Southern Volcanic Zone of the Andes, Chile, 40°S) to identify the source volcanoes and to present the first tephrostratigraphic model for the region. For the last millennium, we propose a multi-criteria correlation model based on five tephra layers identified at seven coring sites. The two upper tephras are thin fine-grained green layers composed of more than 80% rhyodacitic glass shards, and associated to the AD 1960 and AD 1921-22 eruptions of the Puyehue-Cordon de Caulle volcanic complex. The third tephra is a sandy layer dominated by orthopyroxene, and related to the AD 1907 eruption of Rininahue maar. An olivine-rich tephra was deposited at the end of the 16th century, and a tephra characterized by a two-pyroxene association marks the second half of the first millennium AD. In addition, we detail the tephra succession of an 11.22-m-long sediment core covering the last 18,000 yr. The results demonstrate that the central province of the Southern Volcanic Zone has been active throughout the last deglaciation and the Holocene, with no increase in volcanic activity during glacial unloading.  相似文献   

8.
A special kind of magma mixing is extraordinarily well exposed in the Bittersberg subvolcanic complex in the Tertiary volcanic field of the German Westerwald: A trachytic melt has been penetrated by a latitic dyke which has been dispersed within the host magma as small spherical enclaves (globules). Whole rock analyses of the globules show a change in composition that cannot be explained by a simple mechanical mixing between the endmembers. The most evolved globules have a phonolitic composition. Microprobe measurements in the microlithic matrix of the host rock and the guest indicate a diffusive motion of the alkalis from the host into the globules. On the other hand, an opposite trend can be observed for Ca, Mg, Fe and Ti, which are impoverished in the globules. The trace elements and the middle rare earth elements (MREE) has also been involved in the diffusive exchange. The REE-pattern of the most evolved (phonolitic) globules shows a characteristic trough in the area of the MREE which is almost identical to the REE-pattern of many phonolites. The phonolites and the alkali-rich trachytes of the Westerwald show similar globular textures as the Bittersberg volcanics. Therefore, generation of these rocks involving diffusive element exchange during mixing processes in a magma reservoir situated on a deeper crustal level may be possible.  相似文献   

9.
Summary Two co-existing plutonic rocks (diorite and granodiorite) were studied from an intrusion of Variscan age in the Raztocna Valley – Nízke Tatry Mountains, Western Carpathians. Geochemical analyses of major and trace elements constrain a volcanic arc as emplacement environment and give the first hints of a mixture of two magmatic end-members: the so-called Prasivá granodiorite and the Raztocna diorite. The 87Sr/86Sr(0) ratios vary between 0.7075 and 0.7118, the ε Nd(0) values range from −1.4 to −5.0. Common Pb isotopes reveal a dominant crustal source with minor influences from a mantle and a lower crustal source. Modelling based on Sr and Nd isotope data and using three component mixing calculations indicates that mixing of 2/3 of upper mantle material with 1/3 upper crustal material can produce the isotopic composition of the Raztocna diorite. Very minor amounts of lower crust were incorporated in the diorite. For the Prasivá granodiorite, the mixing ratio of upper mantle and upper crust is similar, but a lower crustal reservoir contributed about 5–10% of the source material.  相似文献   

10.
The central pluton within the Neoproterozoic Katharina Ring Complex (area of Gebel Mussa, traditionally believed to be the biblical Mt. Sinai) shows a vertical compositional zoning: syenogranite makes up the bulk of the pluton and grades upwards to alkali-feldspar granites. The latters form two horizontal subzones, an albite–alkali feldspar (Ab–Afs) granite and an uppermost perthite granite. These two varieties are chemically indistinguishable. Syenogranite, as compared with alkali-feldspar granites, is richer in Ca, Sr, K, Ba and contains less SiO2, Rb, Y, Nb and U; Eu/Eu* values are 0.22–0.33 for syenogranite and 0.08–0.02 for alkali-feldspar granites. The δ18O (Qtz) is rather homogeneous throughout the pluton, 8.03–8.55‰. The δ18O (Afs) values in the syenogranite are appreciably lower relative to those in the alkali–feldspar granites: 7.59–8.75‰ vs. 8.31–9.12‰. A Rb–Sr isochron (n = 9) yields an age of 593 ± 16 Ma for the Katharina Ring Complex (granite pluton and ring dikes).

The alkali–feldspar granites were generated mainly by fractional crystallization of syenogranite magma. The model for residual melt extraction and accumulation is based on the estimated extent of crystallization ( 50 wt.%), which approximates the rigid percolation threshold for silicic melts. The fluid-rich residual melt could be separated efficiently by its upward flow through the rigid clusters of crystal phase. Crystallization of the evolved melt started with formation of hypersolvus granite immediately under the roof. Fluid influx from the inner part of the pluton to its apical zone persisted and caused increase of PH2O in the magma below the perthite granite zone. Owing to the presence of F and Ca in the melt, PH2O of only slightly more than 1 kbar allows crystallization of subsolvus Ab–Afs granite. Abundance of turbid alkali feldspars and their 18O/16O enrichment suggest that crystallization of alkali-feldspar granites was followed by subsolvus fluid–rock interaction; the δ18O (Fsp) values point to magmatic origin of fluids.

The stable and radiogenic isotope data [δ18O (Zrn) = 5.82 ± 0.06‰, ISr = 0.7022 ± 0.0064, εNd (T) values are + 3.6 and + 3.9] indicate that the granite magma was generated from a ‘juvenile’ source, which is typical of the rocks making up most of the Arabian–Nubian shield.  相似文献   


11.
The Rhodiani ophiolites are represented by two tectonically superimposed ophiolitic units: the “lower” Ultramafic unit and the “upper” Volcanic unit, both bearing calcareous sedimentary covers. The Ultramafic unit consists of mantle harzburgites with dunite pods and chromitite ores, and represents the typical mantle section of supra-subduction zone (SSZ) settings. The Volcanic unit is represented by a sheeted dyke complex overlain by a pillow and massive lava sequence, both including basalts, basaltic andesites, andesites, and dacites. Chemically, the Volcanic unit displays low-Ti affinity typical of island arc tholeiite (IAT) ophiolitic series from SSZ settings, having, as most distinctive chemical features, low Ti/V ratios (< 20) and depletion in high field strength elements and light rare earth elements.The rare earth element and incompatible element composition of the more primitive basaltic andesites from the Rhodiani ophiolites can be successfully reproduced with about 15% non-modal fractional melting of depleted lherzolites, which are very common in the Hellenide ophiolites. The calculated residua correspond to the depleted harzburgites found in the Rhodiani and Othrys ophiolites. Both field and chemical evidence suggest that the whole sequence of the Rhodiani Volcanic unit (from basalt to dacite) originated by low-pressure fractional crystallization under partially open-system conditions. The modelling of mantle source, melt generation, and mantle residua carried out in this paper provides new constraints for the tectono-magmatic evolution of the Mirdita–Pindos oceanic basin.  相似文献   

12.
The geological record of the Western Andean Escarpment (WARP) reveals episodes of uplift, erosion, volcanism and sedimentation. The lithological sequence at 18°S comprises a thick pile of Azapa Conglomerates (25–19 Ma), an overlying series of widespread rhyodacitic Oxaya Ignimbrites (up to 900 m thick, ca. 19 Ma), which are in turn covered by a series of mafic andesite shield volcanoes. Between 19 and 12 Ma, the surface of the Oxaya Ignimbrites evolved into a large monocline on the western slope of the Andes. A giant antithetically rotated block (Oxaya Block, 80 km×20 km) formed on this slope at about 10–12 Ma and resulted in an easterly dip and a reversed drainage on the block's surface. Morphology, topography and stratigraphic observations argue for a gravitational cause of this rotation. A “secondary” gravitational collapse (50 km3), extending 25 km to the west occurred on the steep western front of the Oxaya Block. Alluvial and fluvial sediments (11–2.7 Ma) accumulated in a half graben to the east of the tilted block and were later thrust over by the rocks of the escarpment wall, indicating further shortening between 8 and 6 Ma. Flatlying Upper Miocene sediments (<5.5 Ma) and the 2.7 Ma Lauca–Peréz Ignimbrite have not been significantly shortened since 6 Ma, suggesting that recent uplift is at least partly caused by regional tilting of the Western Andean slope.  相似文献   

13.
The Villalcampo shear system is a regional dextral strike-slip fault zone that affects Late Variscan granites and their metamorphic country rocks over an area of about 150 km2. The detailed geometry of this subvertical north-west—south-east shear zone is outlined. The system forms an extensional fan to the northwest and extends to the south-east as a broad extensional duplex. Particular attention is focused on the distribution of fault rocks and associated veins in its north-west splay. A structural study of the shear bands (encompassing both geometric and kinematic criteria) and a microscopic study of the fault rocks has led to the interpretation of the system as a brittle—ductile shear zone. Calculations give a shear strain value of = 1.5 and a minimum displacement of s = 3700 m. The localization of gold mineralization in mylonite-filled subvertical extensional veins is a product of the formation of the Villalcampo shear system. The subvertical faults and veins underwent a process of cyclical sealing and reopening. As such they acted as valves controlled by fluid pressure regulating fluid—rock interactions and gold deposition. Conditions favouring these processes occur near the base of the seismogenic zone in the vicinity of the frictional—quasi-plastic transition at mid-greenschist metamorphic conditions (T = 350°C and 10–15 km depth).  相似文献   

14.
The primary minerals of a partly serpentinized Alpine type ultrabasic mass, lying in a zone of low Alpine metamorphism, were analysed with an electron microprobe. The distribution coefficients of Mg and Fe in coexisting orthopyroxenes, clinopyroxenes and olivines indicates an equilibrium temperature of around 1400°C. The Ca/Ca+Mg ratios in the clinopyroxenes indicate temperatures between 800° and 1000°C. This discrepancy in temperature estimations can partly be explained by the high Al2O3-contents of the clinopyroxenes, since a good correlation between Al2O3-contents and Ca/Ca+Mg ratio was found. The Na2O-content of the clinopyroxenes decreases in the successive pyroxenites that differentiated from the main lherzolite. From the mineralogical composition of the different rock types and the chemical compositions of the minerals it is concluded that the Totalp peridotite originated in the Upper Mantle.In the Malenco serpentinite, the clinopyroxenes formed during the rather strong Alpine metamorphism are much poorer in Al2O3 and Na2O than the primary clinopyroxenes. On the other hand, the olivines, grown postdeformationally during the Alpine metamorphism, are not much different in composition to the primary olivines.  相似文献   

15.
在拉萨地块中部米巴勒地区产出的中新世钠质方沸石(霞石)响岩中的单斜辉石发育大量环带结构,环带结构包括正环带、反环带和韵律环带。其中正环带结构从核部到边部Mg#、MgO、Cr2O3呈逐渐降低趋势,而FeO、Na2O、Al2O3、TiO2呈逐渐升高的趋势,它反映了岩浆正常结晶的历史。反环带结构中Mg#、MgO、Cr2O3从核部到边部呈升高的趋势,FeO、Na2O、Al2O3的含量总体上呈降低趋势,本文认为响岩中单斜辉石的这种环带结构是受到了和它共存的钾质-超钾质火山岩岩浆混合或混染所致,两种岩石应是各自独立的母岩浆的结晶产物。具韵律环带结构的单斜辉石从核部到边部出现成分规律性波动,Na2O、Al2O3、TiO2、Cr2O3含量的变化在正反环带的范围内,Mg#值的变化范围较小,在正环带斑晶和基质的范围内,它是岩浆多次混合作用的结果。该地区钠质过碱性岩的出现可能指示青藏高原在这套火山岩喷发时(13~12Ma),构造体制发生了显著的改变,进入到一个典型的陆内伸展阶段。  相似文献   

16.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

17.
18.
世界上的含金夕卡岩大多属钙夕卡岩型,镁夕卡岩金矿床十分稀少。本文介绍我国安徽北部三铺地区镁夕卡岩金(铜、铁)矿床的地质地球化学特征。该区含金(铜、铁)镁夕卡岩主要产于台地断拗区燕山期石英二长闪长玢岩与中上寒武统白云质大理岩外接触带。岩体内接触带发育钙夕卡岩和钾长石化,局部有辉钼矿化产出。金矿化与铜的硫化物密切共生,属于镁夕卡岩的退化热液交代作用产物。金属矿化分带序列自蚀变石英二长闪长玢岩到镁夕卡岩  相似文献   

19.
20.
张伟      李海兵    黄尧  司家亮    刘栋粱    李勇  王焕    杨光      孙立文 《地质通报》2012,31(08):1201-1218
以WFSD-2钻孔岩心为研究对象,通过详细的岩心编录和岩石学、构造地质学等研究,识别出该钻孔岩心具有6段岩性,从上向下依次为彭灌杂岩(0~599.31m)、三叠系须家河组二段(599.31~1211.49m)、彭灌杂岩(1211.49~1679.51m)、三叠系须家河组三段(1679.51~1715.48m)、彭灌杂岩(1715.48~2081.47m)、三叠系须家河组四段(2081.47~2283.56m)。彭灌杂岩主要以花岗岩和火山岩为主,三叠系须家河组沉积岩以砂岩、粉砂岩、泥岩、页岩、煤层(线)和砾岩为主。3套彭灌杂岩与三叠系须家河组沉积岩重复出现,时代较老的岩性段逆冲覆盖在新的地层之上,表明龙门山构造带由一系列逆冲岩片叠置而成。岩心中断裂岩较为发育,主要为断层角砾岩、碎裂岩和断层泥,反映出脆性变形作用的特点。通过对断裂岩的统计分析,厘定了20余条产状不同、规模不等的次级断裂带,断裂带宽度和断裂密度峰值显示FZ600、 FZ720、 FZ782、 FZ817、 FZ922、 FZ951、FZ1449、 FZ1681、FZ2082为主要断裂带,其中FZ1681系规模最大的一条断裂。依据断裂岩的组合特征可以将岩心中断裂带的结构以断层泥为核部划分为两大类:对称型断裂带和不对称型断裂带。根据地表破裂带、WFSD-1钻孔岩心中主滑移带位置的几何关系、岩性分层等因素,可推断汶川地震主滑移带应位于FZ1134、FZ1449或FZ1681之中,同时也暗示该地区经常发生类似汶川地震的大地震活动。研究表明,龙门山地区经历了强烈的构造缩短和快速隆升作用,暗示龙门山地区构造活动非常强烈。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号