首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
阿哈湖Fe、Mn沉积后再迁移的生物地球化学机理   总被引:18,自引:1,他引:17  
万曦  万国江  黄荣贵  普勇 《湖泊科学》1997,9(2):129-134
贵州阿哈湖是一底层滞水带季节性缺氧的中型人工湖。由于长期积累。沉积物顶部微粒悬浮层出现了Fe、Mn富集。湖底缺氧时,经生物氧化作用形成的Fe^2+、Mn^2+自沉积物向上覆水体扩散,水体Fe^2+浓度增高比Mn^2+滞后出现且超过前结束。  相似文献   

2.
The amphipod crustacean Talitrus saltator is an established, easily accessible, biomonitor of trace metal bioavailabilities in coastal waters. We have carried out a geographically widespread collection of T. saltator from European shores, stretching from the north-west Atlantic through the Baltic to the Mediterranean. A primary aim of the work was to establish a database of accumulated trace metal concentrations (Cd, Cr, Cu, Fe, Mn and Zn) in this biomonitor. Statistical analysis has shown significant geographical differences in the bioavailabilities of all the metals, the most distinct being copper, iron and manganese. It has proved possible to identify unusually high accumulated concentrations of Cd, Cr, Cu, Fe, Mn and Zn in this biomonitor, indicative of high metal bioavailability at a particular site. These may serve as reference points for future biomonitoring programmes seeking to identify metal contamination in coastal waters.  相似文献   

3.
More than 30 hydrochemical indices for 17 rivers are characterized based on the results of a study carried out in July 2005. The values of MPCs are found to be exceeded for Fe, Mn, and suspended matter, the concentrations of which, as well as other analyzed components, are controlled by natural processes.  相似文献   

4.
The most important source of dissolved manganese, Mn(II), to the Dead Sea is by upward diffusion from bottom sediments. This source contributes about 80 tons of Mn(II) each year. The concentration of dissolved manganese in the Dead Sea is extraordinarily high (7.03 mg 1?1). It appears that the content (some 1.026 × 106 tons) of dissolved manganese in the sea has remained constant during 1977–1979, although oxygen was introduced into deeper layers during the deepening of the pycnocline (1977–1978) and during the overturn of its water masses in the winter of 1978/79. The rate of oxidation of Mn(II) in Dead Sea water is extremely slow hence Mn(II) may practically be considered as the stable form of Mn in Dead Sea waters. Dilution by fresh water causes a pH rise and may facilitate faster oxidation of the dissolved divalent manganese. It is shown here that the shape of the Mn(II) profile, observed in the lake during 1963, may have developed by oxidation of Mn(II) in the more diluted upper layers and subsequent reduction of the oxidation products in the anoxic and more saline deeper layers during 260 years of continuous meromixis.  相似文献   

5.
Pure cultures of Chlorella sp. catalyzed the oxidation of soluble Mn(II) to particulate, extracellular, manganic oxides. Manganese oxidation was dependent on photosynthetic activity: no oxidation was observed in the dark when cells were grown heterotrophically on glucose, or in the light when photosystem II was inhibited by the addition of DCMU. Manganates were not formed when media were buffered below pH 8.0, suggesting that an important driving force for manganese oxidation was the high pH resulting from photosynthesis. Field studies with minielectrodes in Oneida Lake, New York, demonstrated steep gradients of O2 and pH and the presence of particulate manganic oxides associated with pelagic aggregates of the cyanobacterium Microcystis sp. The manganese oxidation reaction apparently occurs only when photosynthesizing algae are present as dense populations that can generate microenvironments of high (>9.0) pH, either as aggregates in the pelagic zone or concentrated cell cultures in the laboratory. A large-scale transition from soluble to particulate manganese was measured in the surface waters of Oneida Lake throughout summer 1986. Removal of Mn(II) was correlated with the presence of aggregate-forming cyanobacteria that oxidize Mn(II) by the mechanism described above.  相似文献   

6.
Manganese in the North Pacific   总被引:1,自引:0,他引:1  
A quantitative and precise method for determination of dissolved Mn at the nanomole(nmol)/kg level in seawater has been developed and used to study the distribution of Mn in the northeast Pacific. Mn concentrations in the surface mixed layer decrease from 1.0 to 0.6 nmol/kg between the central gyre and the western boundary of the California Current, then increase to values from 2 to 6 nmol/kg near the coastal boundary (in contrast to the distribution of210Pb). Particulate Mn in the surface waters accounts for only about 1% of the total.Vertical distributions of Mn are characterized by surface maxima, minima near 300 m, maxima at mid-depth coinciding with the oxygen minimum and the labile nutrient maxima, and concentrations in Pacific bottom waters of approximately 0.2 nmol/kg. The oceanic distribution of Mn appears to be dominated by external inputs superimposed upon overall scavenging which can lead to Mn maxima in (1) the surface waters due to riverine and atmospheric sources; (2) the deep ocean as a result of hydrothermal injection and/or sediment resuspension; and (3) the oxygen minimum region resulting from in-situ breakdown of organic matter, in-situ MnO2 reduction, and/or advective-diffusive transport of dissolved Mn from anoxic slope sediments.  相似文献   

7.
Manganese oxide crusts similar to those reported from the Mid-Atlantic Ridge rift valley by Scott et al. (1974) were dredged at two sites near the Galapagos spreading axis on ocean floor estimated from magnetic anomalies to be 2.4 and 0.3 m.y. old. Compared to the typical ocean-floor manganese deposits attributed to precipitation from seawater, the 2–6 cm thick manganese crusts reported here exhibit very low Fe/Mn and low232Th/238U ratios, as well as lower transition metal and higher manganese concentrations. The manganese crusts were deposited several orders of magnitude faster than the more common hydrogenous nodules; this fact together with other geochemical characteristics and the geophysical environment suggests the manganese deposits reported here are of hydrothermal origin.  相似文献   

8.
Laboratory incubation experiments were carried out on sediment cores collected from Esthwaite Water, U.K., during April 1987, when the sediments displayed a characteristic surface (1.5 to 2 cm) oxide floc. The experiments were undertaken at 10°C, in the dark, under variable redox and pH conditions for periods of ~ 720 h (30 d). In some cases, realistic amounts of decomposing lake algae were added to simulate the deposition of an algal bloom. Pore waters and overlying waters were obtained from the incubated sediment cores at various time intervals and the samples analysed for pH and dissolved Fe, Mn, Zn and Cu by AAS. The results demonstrated that trace metal concentrations at the sediment-water interface can show rapid, pulsed responses to episodic events associated with controlling factors such as algal deposition and mixing conditions. The variations in dissolved Fe and Mn concentrations could generally be explained by their well known redox behaviour. Appreciable loss of Mn from solution under conditions of well-developed anoxia was consistent with adsorption of Mn2+ by FeS. Cu and Zn were both rapidly (24 h) released into solution during incubation of sediment cores prior to the development of anoxia in the overlying waters. Their most likely sources were the reductive remobilization of Mn oxides and the decomposition of organic matter. The addition of decomposing algae to a series of cores resulted in even higher interfacial dissolved concentrations of Cu and Zn, probably through acting as a supplementary source of the metals and through increased oxide dissolution. Switching from anoxic to oxic conditions also rapidly increased dissolved Cu and Zn concentrations, possibly due to their release during the oxidation of metal sulphides. The enhanced releases of dissolved Cu and Zn were generally short-lived with removal being attributed to the formation of sulphides during anoxia and to adsorption by Fe and Mn oxides under oxic conditions.  相似文献   

9.
Cu concentrations in surface (river and lake) and subsurface waters are determined. The geographic pattern of Cu distribution in natural water is identified. This pattern is controlled by the difference between its concentrations in drained rocks and soils and the geochemical redox conditions of its migration. Territories with low, medium, and elevated Cu concentrations in natural waters are identified. The concentrations of Cu in natural waters of the region are found to be generally lower than the Clarke values.  相似文献   

10.
Females of Donax trunculus L. show higher concentrations of Mn and Zn than males. Differences are very high for Mn which also shows very large monthly fluctuations. Both the metals present higher contents during the period of gonadic maturation. Some high values of manganese found in the period when gonads are resting suggest the influence of sharp environmental variations in the area where bivalves have been collected.  相似文献   

11.
In natural waters arsenic normally occurs in the oxidation states +III (arsenite) and +V (arsenate). The removal of As(III) is more difficult than the removal of As(V). Therefore, As(III) has to be oxidized to As(V) prior to its removal. The oxidation in the presence of air or pure oxygen is slow. The oxidation rate can be increased by ozone, chlorine, hypochlorite, chlorine dioxide, or H2O2. The oxidation of As(III) is also possible in the presence of manganese oxide coated sands or by advanced oxidation processes. Arsenic can be removed from waters by coprecipitation with Fe(OH)3, MnO2 or during water softening. Fixed‐bed filters have successfully been applied for the removal of arsenic.The effectiveness of arsenic removal was tested in the presence of adsorbents such as FeOOH, activated alumina, ferruginous manganese ore, granular activated carbon, or natural zeolites. Other removal technologies are anion exchange, electrocoagulation, and membrane filtration by ultrafiltration, nanofiltration or reverse osmosis.  相似文献   

12.
Baseline levels of a number of trace metals have been determined in samples of water and sediment from Baffin Bay. Concentrations of Cr, Mn, Fe, Ni, Cu and Cd in the waters of Baffin Bay are generally lower than those observed in eastern Canadian coastal waters, levels being close to reported open ocean concentrations. Nearshore sediment samples, analysed for Cr, V, Mn, Ni, Co, Cu, Zn, Hg and Pb, display comparable concentrations to unpolluted muds in eastern Canadian coastal regions. Concentrations of these elements in the deep sediments of central Baffin Bay closely resemble levels in Atlantic Ocean deep-sea clays.  相似文献   

13.
The thorium isotope content of ocean water   总被引:1,自引:0,他引:1  
232Th concentrations of surface and deep Pacific Ocean waters are 0.01–0.02 dpm/1000 kg (60 pgm/kg). The230Th activity is 0.03–0.13 dpm/1000 kg in surface waters and 0.3–2.7 dpm/1000 kg in deep waters. Chemical residence times based on in situ production from parent isotopes are about the same for230Th and228Th in surface waters (1–5 years) but are ten times greater for230Th in deep waters (10–100 years). Apparently there are additional sources of230Th into deep waters. At MANOP site S manganese nodule tops are enriched in Th isotopes by adsorption of Th from seawater and not by incorporation of Th-rich particulates.  相似文献   

14.
In natural waters arsenic concentrations up to a few milligrams per litre were measured. The natural content of arsenic found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. Anthropogenic sources of arsenic in the environment are the smelting of ores, the burning of coal, and the use of arsenic compounds in many products and production processes in the past. A lot of arsenic compounds are toxic and cause acute and chronic poisoning. In aqueous environment the inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) are the most abundant species. The mobility of these species is influenced by the pH value, the redox potential, and the presence of adsorbents such as oxides and hydroxides of Fe(III), Al(III), Mn(III/IV), humic substances, and clay minerals.  相似文献   

15.
Between 1999 and 2002, a former open-cast mine was filled with river water forming the recent Lake Goitsche. During filling initially acid water was neutralised. Phosphorus (P) imported from Mulde River was nearly completely removed from the water column by co-precipitation with iron (Fe) and aluminium (Al) and deposited in the sediment.During extremely high waters of the Mulde River in 2002, a dike breach facilitated a second high import of P into Lake Goitsche with suspended and dissolved matter. The analysis of total phosphorus (TP), however, showed that P again had been eliminated from the water body a few months after the flood event. Sediment investigations before filling with river water, during filling, and after the flood event were used to analyse the process of P immobilisation in a lake with acid mine drainage history.The ratios of Fe to soluble reactive P (SRP) of sediment pore water were up to three orders of magnitudes higher than in natural lakes and can serve as an indicator for potential internal P loading from sediments. The SRP concentrations at the oxic/anoxic boundary were near or below the limit of quantification (< 0.2 μmol/L). Fe and manganese (Mn) redox cycling were responsible for hindering P dissolution from sediment to lake water.Finally it can be stated, that the risk of eutrophication for such a lake seems to be low.  相似文献   

16.
The presence of metals, including manganese (Mn) and iron (Fe), adversely impacts water quality. In seasonally stratified reservoirs, Mn and Fe can accumulate in the water column due to reducing conditions in sediments and be released to downstream rivers through dam discharge. In addition to reservoir stratification influences, the release of metals downstream is influenced by hydrologic conditions in the river. We examined the seasonal and spatial variability of Mn and Fe concentrations in a eutrophic, hydropower reservoir and the downstream river over a two‐year period. Overall, we found that reservoir stratification was a strong predictor of tailrace Mn and Fe concentrations but that tailrace Fe concentrations were also influenced by dam discharge. Downgradient of the tailrace, river discharge and suspended sediment were the dominant predictors of both Mn and Fe concentrations. Using our data, we develop a conceptual model of seasonal and hydrologic drivers of metal concentrations. The model can be modified for other systems aiding drinking water utilities and other water users in forecasting under what seasonal and hydrologic conditions that Mn and Fe concentrations in river systems are likely to be elevated.  相似文献   

17.
Measurements of dissolved Cd, Co, Cu, Mn, Ni, Pb, and Zn have been made on a seasonal basis at five stations on a north–south transect across the central English Channel between Cherbourg and the Isle of Wight. Vertical and horizontal distributions of dissolved Cd, Pb, Cu and Zn are relatively uniform except for sampling sites near the English coast. Dissolved Mn and Co show increased concentrations in the English coastal waters, and for Mn the seasonal trend in concentration follows the pattern seen in the Strait of Dover with higher values in the late summer. Ni and Cu are higher in concentration on the English side, which reflects mainly riverine sources. Measurements were also made of particulate forms of the metals above plus particulate Al, Ca, Fe, Mg, Sr and Ti. Water column concentrations of particulate metals broadly follow the distribution of suspended particulate matter, with highest concentrations near the UK coast. Trace metal concentrations have been integrated with modelled data on fluxes of water to provide estimates of fluxes for these elements into the eastern Channel, and an initial comparison is made with data for fluxes of metals through the Strait of Dover obtained during an earlier study. A major influence on the fluxes of particulate metals through the Isle of Wight-Cherbourg transect is the gyre system to the South east to the Isle of Wight, which has important east to west as well as west to east transport components. For those elements where the dissolved form of the metal dominates, the large flow of water in the central Channel waters leads to major fluxes of the metals towards the east and the Strait of Dover. However, the high suspended particulate matter loadings in the coastal waters and impact of the gyre system lead to net east to west fluxes of particulate Al, Fe, Mn and Ti. Comparison of these fluxes with data on the net west to east transport of these materials through the Strait of Dover infers that there must be a significant supply of these particulate metals to the eastern Channel.  相似文献   

18.
For health, economic, and aesthetic reasons, allowable concentrations (as suggested by the United States Environmental Protection Agency) of the secondary contaminants iron (Fe) and manganese (Mn) found present in drinking water are 0.3 and 0.05 mg/L, respectively. Water samples taken from private drinking wells in rural communities within Buncombe County, North Carolina contain concentrations of these metals that exceed secondary water quality criteria. This study predicted the spatial distribution of Fe and Mn in the county, and evaluated the effect of site environmental factors (bedrock geology, ground elevation, saprolite thickness, and drinking water well depth) in controlling the variability of Fe and Mn in groundwater. A statistically significant correlation between Fe and Mn concentrations, attributable to bedrock geology, was identified. Prediction models were created using ordinary kriging and cokriging interpolation techniques to estimate the presence of Fe and Mn in groundwater where direct measurements are not possible. This same procedure can be used to estimate the trend of other contaminants in the groundwater in different areas with similar hydrogeological settings.  相似文献   

19.
Concentrations of Zn in the surface (river and lake) and subsurface waters are assessed in the basin of the Selenga River—the main tributary into Lake Baikal. Specific geographical features are revealed in Zn distributions in natural waters, which are determined by different Zn concentrations in drained rocks and soils and by the geochemical redox conditions of Zn migration. Areas with low, medium, and relatively high Zn concentrations (as compared with their Clarke concentrations) are determined.  相似文献   

20.
Dissolved Ba, Cd, Co, Mn, Mo, Ni, Rb, Sb, Sr, U and V were measured in the Oubangui river (Central African Republic) during a complete flood period. The dissolved concentrations vary by factors ranging from 1.4 to 8.2 as a function of river discharge: Sr, Ba, Rb and Mo concentrations decrease with rising stage; Ni, U, Sb, Cd, V and Mn concentrations increase with rising stage. These distributions are explained by a mixing of quick flow, mostly surface runoff with delayed flow, mostly groundwater. The dual origin of stream waters is demonstrated by the major element ratios, which are close to a silicate end-member during the high-flow period and trend towards a carbonate end-member during the low-flow period. Moreover, geological heterogeneities in the Oubangui basin may play a role in the variation of concentrations observed at the basin outlet. The previously indicated presence of a subsurface carbonate sequence in the lower part of the basin is confirmed. Cd, V, Mn and Co show peak concentrations during decreasing stage. We suggest that biological processes such as release from phytoplanktonic material and dissolution of oxides or carbonate phases may explain this maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号