首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the digital waveform data recorded by Xinjiang Digital Seismic Network for the Xinyuan-Hejing M_L6.8 earthquake sequences of June 30,2012,this paper analyzes the stress drops of earthquake sequences and the correlation coefficients of focal mechanisms significant for strong aftershocks.Firstly,the source parameters of the Xinyuan-Hejing M_L6.8 earthquake sequences are obtained by applying the spectrum analysis and the Brunes source model.Then,the correlation coefficients of spectral amplitudes are calculated using the low-frequency spectral amplitude recorded by the same station for the different events.Finally,based on the results of the correlation coefficients of spectral amplitudes,the events with similar focal mechanisms are grouped using the clustering method.The results show that:(1)The stress drop values show a steady trend in the aftershock sequence calm period and the stress drop values show a rise-fall in strong aftershocks.(2)The moving average correlation coefficient of amplitude spectrum begins to spread after the main shock.It shows that the correlation decreases between the main shock and the aftershocks in mechanisms.(3)The results of focal mechanism groups show that the earthquake sequences are mainly strike slips.The stress distribution of the main pressure axis is nearly NS,which is the same as the structural stress field.(4)The magnitude and mechanism show that there is an agreement before the strong aftershock,which shows that the regional stress field is enhanced.  相似文献   

2.
用科里奥利力效应预测强余震是一种震源物理的方法。回顾2008年汶川8.0级大震时用该方法判定余震最大强度的过程,半定性与综合判定为可能发生的最大余震强度为6.5级左右,实际发生了6.4级地震,与主震震级相差大于1级(MM=1.6)。验证结果进一步说明该方法的科学性,给科里奥利力效应判定余震增加了一个可靠的判例。  相似文献   

3.
Using the ground motion attenuation relation, we calculated and compared the effective peak acceleration (EPA) generated by main shocks and their strong aftershocks of 21 earthquake sequences with MS≥7 occurred in Chinese mainland and offing of China during 1966~2002. The result shows that EPA of strong aftershocks usually exceed that of main shock for 76.2% earthquake sequences and EPA of more than 50% strong aftershocks are greatly lar-ger than that of main shocks in large area, which suggests that it is necessary to take damage produced by strong aftershock into account in the probabilistic seismic hazard analysis and the seismic design.  相似文献   

4.
According to geological tectonics and seismic activites this paper devided North China (30°–45°N, 105°–130°E) into four areas. We analyzed the North China earthquake catalogue from 1970 to 1986 (from 1965 to 1986 for Huabei, the North China, plain region) and identified forty-two bursts of aftershock. Seven of them occurred in aftershock regions of strong earthquakes and seventeen of them in the seismic swarm regions. The relation between strong earthquakes with the remaining eighteen bursts of aftershocks has been studied and tested statistically in this paper. The result of statistical testing show that the random probabilityp of coincidence of bursts of aftershock with subsequent strong earthquakes is less than six percent. By Xu’sR scoring method the efficacy of predicting strong earthquake from bursts of aftershock is estimated greater than 39 percent. Following the method proposed in the paper we analyzed the earthquake catalogue of China from 1987 to June, 1988. The results show that there was only one burst of aftershock occurred on Jan. 6, 1988 withM=3.6 in Xiuyan of Northeast China. It implicates that a potential earthquake withM S⩽5 might occur in one year afterwards in the region of Northeast China. Actually on Feb. 25, 1988 an earthquake withM S=5.3 occurred in Zhangwu of Northeast China. Another example is Datong-Yanggao shock on October 18, 1989 which is a burst of aftershock. Three hours after an expected shock withM =6.1 took place in the same area. Two examples above have been tested in practical prediction and this shows that bursts of aftershocks are significant in predicting strong earthquakes. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 273–280, 1991. Part of earthquake catalogue is from Jinbiao Chen, Peiyan Chen and Quanlin Li.  相似文献   

5.
2019年12月26日湖北应城发生M4.9有感地震,其震感波及武汉大部分地区。为了分析该地震的发震构造及余震活动性,本文利用波形拟合方法测定了不同速度模型下该地震的震源机制解和矩心深度,并用Bootstrapping抽样反演技术评价反演结果;此外,利用模板匹配技术匹配主震和目录余震波形,获取了更为完整的余震目录。结果显示,应城地震以走滑为主,矩心深度7.5km左右,矩震级MW4.67;应城地震有1个前震和17个余震,余震序列缺少M2~4事件,表明应城地震为孤立型地震,M2以下地震的b值为0.8。  相似文献   

6.
A version of the restricted trigger model is used to analyse the temporal behaviour of some aftershock sequences. The conditional intensity function of the model is similar to that of the Epidemic Type Aftershock-Sequence (ETAS) model with the restriction that only the aftershocks of magnitude bigger than or equal to some threshold Mtr can trigger secondary events. For this reason we have named the model Restricted Epidemic Type Aftershock-Sequence (RETAS) model. Varying the triggering threshold we examine the variants of the RETAS model which range from the Modified Omori Formula (MOF) to the ETAS model, including such models as limit cases. In this way we have a quite large set of models in which to seek the model that fits best an aftershock sequence bringing out the specific features of the seismotectonic region struck by the crisis. We have applied the RETAS model to the analysis of two aftershock sequences: The first is formed by the events which followed the strong earthquake of M=7.8 which occurred in Kresna, SW Bulgaria, in 1904. The second includes three main shocks and a large swarm of minor shocks following the quake of 26 September 1997 in the Umbria-Marche region, central Italy. The MOF provides the best fit to the sequence in Kresna; that leads to the thought that just the stress field changes due to the very strong main shock generate the whole sequence. On the contrary, the complex behaviour of the seismic sequence in Umbria-Marche appears when we make the threshold magnitude vary. Setting the cut-off magnitude M0=2.9 the best fit is provided by the ETAS model, while if we raise the threshold magnitude M0=3.6 and set Mtr=5.0, the RETAS model turns out to be the best model. In fact, observing the time distribution of this reduced data set, it appears more evident that especially the strong secondary events are followed by a cluster of aftershocks.  相似文献   

7.
付裕  黄晖  徐鸣洁 《中国地震》2018,34(4):621-631
2016年8月24日意大利中部发生MW6.0地震,2个月之后,震中附近相继发生MW5.5、MW5.9、MW6.5地震。研究这几次较大地震间的相互触发作用及机制十分必要,然而在大地震之后传统地震目录通常缺失很多余震事件,缺失的余震事件包含着早期余震时空分布和迁移规律的信息,为完善余震目录本文利用匹配滤波方法对MW6.0地震后80天内的连续数据进行余震检测,得到了数十倍于模板数量的新检测事件,检测事件与模板事件组成的新余震目录完备震级为1.0,提高了地震目录的完备性。依据新余震目录进行余震时空分布研究,结果显示MW6.0、MW5.9、MW6.5地震的早期余震迁移规律不同。MW6.0地震的早期余震沿着断裂走向同时朝两侧迁移;而MW5.9、MW6.5地震的早期余震向南、北迁移表示出不对称的特征。通过拟合余震迁移前端发现,MW6.0、MW5.5地震的早期余震朝着随后较大地震的方向迁移,且较符合lgt的特征,表明余震迁移可能与慢滑动有关。  相似文献   

8.
The earthquake stress-drop values of two sequences were accurately calculated after taking away the effects due to regional earthquake anelastic attenuation and station site response, using waveform data and seismic phase data of sequences of the Jinggu MS6.6, and Ludian MS6.5 earthquakes in Yunnan. These results show that the stress drop with magnitude increases within the scope of this study of magnitude. After eliminating the influence of the magnitude, the average value of stress-drop in the Jinggu sequence is higher than that of the Ludian sequence at the same magnitude range. This may be related to the stress state in different regions. In terms of the changes of time and space of stress-drop, before MS5.8 strong aftershock, the stress-drop is "slowing down-turning up-keeping a high value" after the mainshock, meanwhile, almost all of the abnormally high stress drop value is distributed around the MS5.8 strong aftershock, showing that the stress environment in the region was increasing after the mainshock. And after the MS5.9 strong aftershock, stress-drop rapidly declines to a relatively stable state, meanwhile, the high value of stress-drop is distributed around the strong aftershock, showing that the regional tectonic stress gets more fully release, its stress environment begins to rapidly decrease. For the Ludian sequence without a strong aftershock occurring, the average value of stress drop is lower than that of the Jinggu earthquake sequence at the same magnitude range, while at the same time, the stress-drop of the aftershock sequence almost hasn''t changed much. In the time after the mainshock, combined with the release characteristics of the main energy, the stress in the region is excessively released, the subsequent stress in the region gradually returns to normal. This may be the reason why the activity of Ludian aftershocks significantly was weaker and subsequently there were no strong aftershocks occurred.  相似文献   

9.
2018年9月4日新疆伽师发生MS5.5地震,震中处于塔里木地块西北缘,位于1997~1998年伽师强震群震区内。此次伽师地震前发生了MS4.7前震,截至9月30日最大余震震级为MS4.6(ML5.0),初步判定为前-主-余型地震序列。序列精定位结果显示,余震沿近NE向展布,主震震源深度与1997~1998年伽师强震主震基本一致,发震断层陡立。本文从区域的构造环境、地震震源机制解和余震分布特征等方面分析认为,地震发生在伽师隐伏断裂东南端部,为1997~1998年伽师强震群震区的一次新的构造活动。序列参数、视应力等计算结果显示,伽师MS5.5地震的预测最大余震震级与最大余震震级MS4.6接近,表明序列最大余震已经发生。  相似文献   

10.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

11.
    
An earthquake ofM S=6.9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region,M S=5.5 on May 7, 1990,M S=6.0 on Jan. 3, 1994 andM S=5.7 on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CD-SN) are deconvolved for the source time functions by the correspondent recordings of the three aftershocks as empirical Green’s functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) obtained are nearly identical. The RSTFs suggest theM S=6.9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about 8 s. Comparing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from P-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-period wavform data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of theM S=6.0 event on Jan. 3, 1994 and theM S=5.7 event on Feb. 16, 1994 are quite simple, both RSTFs are single impulses. The RSTFs of theM S=6.9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aftershocks are compared. The relative scalar seismic moment of the three aftershocks deduced from the relative scalar seismic moments of theM S=6.9 main shock are very close to those inverted directly from the EGF deconvolution. The relative scalar seismic moment of theM S=6.9 main shock calculated using the three aftershocks as EGF are 22 (theM S=6.0 aftershock being EGF), 26 (theM S=5.7 aftershock being EGF) and 66 (theM S=5.5 aftershock being EGF), respectively. Deducing from those results, the relative scalar sesimic moments of theM S=6.0 to theM S=5.7 events, theM S=6.0 to theM S=5.5 events and theM S=5.7 to theM S=5.5 events are 1.18, 3.00 and 2.54, respectively. The correspondent relative scalar seismic moments calculated directly from the waveform recordings are 1.15, 3.43, and 3.05. Contribution No. 96B0007, Institute of Geophysics, SSB, China.  相似文献   

12.
On 22 April 1983, a very large area of Thailand and part of Burma were strongly shaken by a rare earthquake (m b=5.8,M s=5.9). The epicenter was located at the Srinagarind reservoir about 190 km northwest of Bangkok, a relatively stable continental region that experienced little previous seismicity. The main shock was preceded by some foreshocks and followed by numerous aftershocks. The largest foreshock ofm b=5.2 occurred 1 week before the main shock, and the largest aftershock ofm b=5.3 took place about 3 hours after the main shock. Focal mechanisms of the three largest events in this earthquake sequence have been studied by other seismologists using firts-motion data. However, the solutions for the main shock and the largest aftershock showed significant inconsistency with known surface geology and regional tectonics. We reexamined the mechanisms of these three events by using teleseismicP-andS-waveforms and through careful readings ofP-wave first motions. The directions of theP axes in our study range from NNW-SSE to NNE-SSW, and nodal planes strike in the NW-SE to about E-W in agreement with regional tectonics and surface geology. The main shock mechanism strikes 255°, dips 48°, and slips 63.5°. The fault motions during the main shock and the foreshock are mainly thrust, while the largest aftershock has a large strike-slip component. The seismic moment and the stress drop of the mainshock are determined to be 3.86×1024 dyne-cm and 180 bars, respectively. The occurrence of these thrust events appears to correlate with the unloading of the Srinagarind reservoir. The focal depths of the largest foreshock, the main shock, and the largest aftershock are determined to be 5.4 km, 8 km, and 22.7 km, respectively, from waveform modeling and relative location showing a downward migration of hypocenters of the three largest events during the earthquake sequence. Other characteristics of this reservoir-induced earthquake sequence are also discussed.  相似文献   

13.
较大的余震可能造成额外损失并有二次触发建筑物受灾的风险。为研究余震序列衰减规律,文章尝试采用指数衰减模型拟合分析5个不同地区余震序列,并借助修正赤池信息准则、贝叶斯信息准则与调整后R2,分析其与传统余震衰减模型的性能。结果表明,指数模型描述余震序列衰减规律的能力与修正的大森余震模型、修正的拉伸指数模型接近。尤其对于四川长宁MS6.0余震序列和云南彝良MS5.7余震序列,指数模型表现优于其他两种模型。指数模型参数具有明确的物理意义:参数A与r之和能够准确代表强震后的实际初始余震数,5个余震序列初始余震数偏差均小于1.70%;参数k可作为反映余震序列衰减快慢的特征值,k值越大则余震序列衰减越慢,其值与主震震级呈反比例关系。  相似文献   

14.
The aftershocks of the catastrophic Sumatra-Andaman earthquake of December 26, 2004 (M = 9.0) are analyzed in the general context of the theory of critical phenomena. The analysis relies on the idea that, according to this theory, critical transitions have two key properties. The first is that the intensity of the fluctuations in a dynamical system monotonically increases with the approach of the bifurcation point, so that at a certain time instant, a sufficiently strong internal pulse initiates the catastrophe. This transition can be treated as spontaneous. The second property is that the reactance of the dynamical system drastically increases on the approach of the bifurcation. Even a weak external perturbation in the near-threshold interval can result in a catastrophe. In this case, it is reasonable to refer to the critical transition as an induced transition. The aftershocks of the Sumatra-Andaman earthquake are likely to demonstrate the typical features of induced seismicity. First, the strongest aftershock (M = 7.2) occurred 3 h 20 min after the main shock. It could have probably been induced by the round-trip seismic echo. Second, it was found that the spectral density of the aftershock sequence significantly increases at about ~0.3 mHz, which is close to the frequency of the spheroidal mode 0S2. This suggests that the spheroidal oscillations of the Earth, which are excited by the main seismic shock, modulate the aftershock activity. Both hypotheses are supported by the analysis of the aftershocks of the Tohoku earthquake of March 11, 2011 (M = 9.0).  相似文献   

15.
采用双差定位方法,利用中国地震台网的数据对2017年8月9日精河6.6级地震的余震序列进行了重新定位。截至2017年8月14日16时,共获得209个余震的重新定位结果。结果显示,余震主要呈近EW向或NWW向分布,余震区长约50km,宽约17km。余震分布在主震的西侧,推断此次地震单侧破裂。余震震源深度为1~25km,其中,震级较大余震深度为8~17km。精河地震序列的余震活动随时间呈起伏状衰减,震后2天内比较活跃,此后出现较快衰减。随时间推移,余震区呈现中西部衰减慢、东部衰减快的特点。此次地震震中距2011年精河5.0级地震震中21km,相比2011年精河地震,其震源更深,震级更大,但震源机制解相近,均为逆冲型。结合区域构造背景分析认为,库松木契克山前断裂为此次地震发震构造的可能性较大。  相似文献   

16.
The results of investigating the data of stationary and field observations in the epicentral zone of the Kultuk earthquake of August 27, 2008 with M w = 6.3 localized south of Baikal are presented. The seismic activation amounting to 1790 aftershocks with K p ?? 4 (M w ?? 0.9) affected a part of the general fault bounding the southwestern coast of the lake and shallower intrabasin structures. It was established through the cluster analysis that the main shock was located at the periphery of the cloud of the concentrated seismicity component, and three main clusters reflecting a complex character of rupture in the earthquake source were identified in the zone of aftershocks. Owing to a high accuracy of aftershock hypocenters determinations (ERZ ?? 1.2 km), the local character of the seismisity-generating zones was revealed. Based on the method of mapping seismic regime parameters, it was established that zones of reduced fractionality are recognizable in the central part of the source area; in this case, the entire periphery, except for the southeastern direction (where the main shock epicenter is located), is characterized by a high fractionality, which also points to the complex character of the rupture in the source. On the whole, the aftershock sequence under consideration showed the activation of the southwestern flank of the Southern Baikal region, which remained passive for more than one century, and demonstrated destructive features of the Earth??s crust.  相似文献   

17.
High frequency fall-off of source spectra using Q -free spectra estimation   总被引:1,自引:0,他引:1  
IntroductionTheearthquakesourcespectrastudiesmaybetracedbacktolate1960s(Aki,1967;Brune,1970;Hanks,1979).Foritsimportanceinstr...  相似文献   

18.
The 2018,Songyuan,Jilin M_S5. 7 earthquake occurred at the intersection of the FuyuZhaodong fault and the Second Songhua River fault. The moment magnitude of this earthquake is M_W5. 3,the centroid depth by the waveform fitting is 12 km,and it is a strike-slip type event. In this paper,with the seismic phase data provided by the China Earthquake Network, the double-difference location method is used to relocate the earthquake sequence,finally the relocation results of 60 earthquakes are obtained. The results show that the aftershock zone is about 4. 3km long and 3. 1km wide,which is distributed in the NE direction. The depth distribution of the seismic sequence is 9km-10 km. 1-2 days after the main shock,the aftershocks were scattered throughout the aftershock zone,and the largest aftershock occurred in the northeastern part of the aftershock zone. After 3-8 days,the aftershocks mainly occurred in the southwestern part of the aftershock zone. The profile distribution of the earthquake sequence shows that the fault plane dips to the southeast with the dip angle of about 75°. Combined with the regional tectonic setting,focal mechanism solution and intensity distribution,we conclude that the concealed fault of the Fuyu-Zhaodong fault is the seismogenic fault of the Songyuan M_S5. 7 earthquake. This paper also relocates the earthquake sequence of the previous magnitude 5. 0 earthquake in 2017. Combined with the results of the focal mechanism solution,we believe that the two earthquakes have the same seismogenic structure,and the earthquake sequence generally develops to the southwest. The historical seismic activity since 2009 shows that after the magnitude 5. 0 earthquake in 2017,the frequency and intensity of earthquakes in the earthquake zone are obviously enhanced,and attention should be paid to the development of seismic activity in the southwest direction of the earthquake zone.  相似文献   

19.
A MS8.0 earthquake occurred in Wenchuan County, Sichuan Province, China, on May 12, 2008, and subsequently, numerous aftershocks followed. We obtained the moment tensor solutions and source time functions (STFs) for the Wenchuan earthquake and its seven larger aftershocks (MS5.0~6.0) by a new technique of moment tensor inversion using the broadband and long-period seismic waveform data from the Global Seismic Network (GSN). Firstly, the theoretical background and technical flow of the new technique was briefly introduced, and an aftershock of the Wenchuan earthquake sequence was employed to illustrate the real procedure for inverting the moment tensor; secondly, the moment tensor solutions and STFs of the eight events, including the main shock, were presented, and finally, the interpretation of the results was made. The agreement of our results with the GCMT results indicates the new approach is efficient and feasible. By using this approach, not only the moment tensor solution can be obtained but also the STF can be retrieved; the inverted STFs indicate that the source rupture process may be com-plicated even for the moderate earthquakes. The inverted focal mechanisms of the Wenchuan earthquake sequence show that the most of the aftershocks occurred in the main faults of the Longmenshan fault zone with predomi-nantly thrustingwith minor right-lateral strike-slip component, but some of them may have occurred in the sub-faults with strike-slip faulting in the vicinity of the main faults.  相似文献   

20.
2022年1月8日青海省海北州门源县发生MS6.9地震,震中距离2016年1月21日门源MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源MS6.9地震和2016年门源MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号