首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT The Wagwater Trough is a fault-bounded basin which cuts across east-central Jamaica. The basin formed during the late Palaeocene or early Eocene and the earliest sediments deposited in the trough were the Wagwater and Richmond formations of the Wagwater Group. These formations are composed of up to 7000 m of conglomerates, sandstones, and shales. Six facies have been recognized in the Wagwater Group: Facies I-unfossiliferous massive conglomerates; Facies II—channelized, non-marine conglomerates, sandstones, and shales; Facies III-interbedded, fossiliferous conglomerates and sandstones; Facies IV—fossiliferous muddy conglomerates; Facies V—channelized, marine conglomerates, sandstones, and shales; and Facies VI—thin-bedded sheet sandstones and shales. The Wagwater and Richmond formations are interpreted as fan delta-submarine fan deposits. Facies associations suggest that humid-region fan deltas prograded into the basin from the adjacent highlands and discharged very coarse sediments on to a steep submarine slope. At the coast waves reworked the braided-fluvial deposits of the subaerial fan delta into coarse sand and gravel beaches. Sediments deposited on the delta-front slope were frequently remobilized and moved downslope as slumps, debris flows, and turbidity currents. At the slope-basin break submarine fans were deposited. The submarine fans are characterized by coarse inner and mid-fan deposits which grade laterally into thin bedded turbidites of the outer fan and basin floor.  相似文献   

2.
Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain   总被引:2,自引:0,他引:2  
The Tabernas‐Sorbas basin was a narrow, east‐west trending, marine trough of Late Miocene age. Sediment gravity flow deposits dominate the basin fill and provide a record of changing bathymetry in response to tectonically induced sea bed deformation. A reanalysis of the western end of the basin in the vicinity of Tabernas establishes an upward evolution involving: (1) sand‐starved marls that were incised by axial channels recording a period of bypass, during which sand deposition took place in a depocentre further to the east; (2) punctuated infilling of the incisions, locally by high‐sinuosity embedded channels. Channel filling is related to a gradient reduction, which presaged collapse of the axial slope as the depocentre began to migrate westwards into the Tabernas area; (3) draping of the earlier incision fills by laterally extensive sheet turbidites, which were initially contained in structurally controlled depressions. These ‘deeps’ opened up as active faults propagated through the former axial slope. Flow containment is inferred on account of the unusual structure of the sheet sandstone beds, complex palaeoflow relationships and thick mudstone caps; (4) fault‐controlled topography was subsequently healed, and further sheet turbidites showing evidence of longer range containment and progressive slope onlap were emplaced. These record mixed supply from both seismically trigged ‘axial’ failures and a reactivated, fault‐controlled slope building out from the northern margin of the basin. Flows traversing the trough floor were strongly reflected off slopes marking the southern limit of the basin. The studied succession is capped by (5) the Gordo megabed event, a large, probably seismically triggered, failure which blanketed the basin floor, demonstrating an enlarged but still contained basin now devoid of significant intrabasinal fault topography. Tectonics played a key role in driving the evolution of the turbidite systems in this basin. Deformation of the basin floor had an important impact on gradients, slope stability, bathymetry and the ability of flows to bypass along the trough axis. Westward migration of the depocentre into the Tabernas area led to a change from incision and bypass to conduit backfilling to flow containment, as fault‐induced subsidence generated a ‘sump’, which trapped flows moving along the basin axis.  相似文献   

3.
F. 《Earth》2005,70(3-4):167-202
Sand-rich submarine fans are radial or curved in plan view depending on the slope of the basin floor. They occur isolated or in coalescing systems. The fans' average lateral extent measures close to 25 km and their thickness usually less than 300 m. The thickness of outer fan sequences averages around 120 m and that of middle fan successions around 160 m. Rarely reported inner fan sequences have a maximum thickness of 80 m.

The formation of sand-rich fans is closely related to tectonic activity. Their sediment is coarse-grained and compositionally immature as indicated by significant feldspar content due to close provenance and rapid transport by short rivers with a steep gradient controlled by tectonism. Tectonic activity also provides for narrow shelves making the fans relatively insensitive to sealevel changes. Formation of sand-rich fans typically occurs in restricted continental basins. The tectonic settings are highly variable. Sand-rich fans typically receive their sediment through submarine canyons which intercept sand from longshore drift and/or are fed more or less directly by regional rivers.

The type of ancient fan system (radial, curved, isolated, coalescing) may be identified through paleocurrent map plots, facies map sketches, recognition of lateral thickness variations and sediment influx centers, as well as lateral bed correlations defining the minimum fan extent.

Important in distinguishing different environments of ancient fans are detailed measured sections, their comparison and correlation. Channelized inner fan and middle fan deposits may be distinguished from the unchannelized outer fan successions through bed correlation tests which reflect their different stratigraphic architectures and bedding patterns. Bedding in outer fan deposits (lobes) is relatively simple, parallel, and regular. The lateral bed continuity is relatively high. Channel fills, especially those of middle fan distributary channels, display a complicated bedding pattern with vertical and lateral random distribution of channel fills, axial erosion, and bed convergence towards the channel margins. Channel fills exhibit only linear bed continuity. Thus, the probability in carrying out local to regional scale lateral bed correlations is almost exclusively limited to outer fan deposits.

The measured sections will help further distinguish fan environments by revealing: (1) different facies associations in outer fan sequences (mainly B, C and D) and middle fan successions (mainly A, B, C, D, and channel margin facies); (2) greater average bed and layer thicknesses in middle fan as opposed to outer fan successions (“bed” and “layer” as used herein); (3) more frequent amalgamation surfaces in channel fills than in unchannelized outer fan deposits; (4) more frequent tabular amalgamation surfaces in outer fan sections; (5) more frequent nontabular amalgamation surfaces in channel fills; and (6) more frequent dish structures in middle fan than outer fan successions.

Rarely exposed fan valley fills may be identified by coarse conglomerates. Moreover, in proximity to fan valley fills, relatively mud-rich sediments may be observed that derive from the depositional system of the basin slope.  相似文献   


4.
ABSTRACT Three transitional submarine fan environments are recognized in the late Precambrian, 3-2 km thick Kongsfjord Formation in NE Finnmark, North Norway, namely: (1) middle to outer fan; (2) fan lateral margin, and (3) fan to upper basin-slope deposits. Middle to outer fan deposits have a high proportion of sandstones, typically showing Bouma T bede with T a in the thicker beds. Deposition was mainly from sheet flows with rare shallow channels. Middle to outer fan deposits are an association of sandstone packets less than 10 m thick but commonly only a few metres thick, interpreted as channels or lobes. Interchannel and fan fringe deposits occur as discrete packets of beds between the thicker bedded and coarser grained channel or lobe deposits. Fan lateral margin deposits are recognized on the basis of their stratigraphic position adjacent to inner/middle fan deposits. They are characterized by: (a) a relatively high proportion of fine-grained sandstone/siltstone turbidites compared to other major fan environments; (b) relatively small channels oriented at various angles to the regional basin slope; (c) lobes associated with channels, and (d) abundant clastic dykes and other soft-sediment deformation. Fan lateral margin deposits are distinguished from the outer fan/basin plain successions on account of the very high proportion of siltstone turbidites comparable with middle fan inter-channel deposits. Fan to upper basin-slope deposits occur at the top of the formation as an alternation of sandstone turbidites, most of which are laterally discontinuous, and very thin-bedded upper basin-slope siltstones with slide deposits.  相似文献   

5.
The Grès de Champsaur turbidite system, deposited in a distal setting in the Alpine Foreland Basin of south‐eastern France, exhibits a repeated upsection alternation in sand body geometry between incised channels and sheet sands. The channels form symmetric lenticular erosional features, of width 900–1000 m (measured between the lateral limits of incision) and depth 65–115 m, and can be traced axially for up to 5 km. In each case, the channel fill is capped by a laterally persistent sandy sheet‐form interval, which lies upon a fine‐grained substrate beyond the channel margins. No intrachannel elements have been traced into the substrate sequence, suggesting that, before infill, the channels acted as open sea‐floor conduits of essentially the same dimensions as the preserved channel deposits. The channels are vertically stacked, although axial erosion juxtaposes younger channel axis deposits against the fill of older channels and their channel‐capping sheet sandstones to produce an apparently well‐connected composite sandstone body geometry. The predominant channel‐fill facies comprises coarse‐grained, amalgamated sandstones, which are commonly parallel‐ or cross‐stratified. Subsidiary facies of finer grained sandstone–mudstone couplets and clast‐bearing muddy debrites are commonly preserved as erosional remnants, suggesting a complex channel history of aggradation and erosion. The repeated cycles of channel incision, infill and transition to sheet sandstone development indicate repetitive incision and healing of the palaeo‐sea floor. A model is proposed that links incision to the development of relatively steep axial gradients (parallel to the mean dispersal direction) and the return to sheet‐form deposition to the re‐establishment of lower axial gradients, with the repetitive switch between incisional channels and sheet sandstones driven by changes in sediment input rate against a background of ongoing sea‐floor tilting.  相似文献   

6.
J. R. INESON 《Sedimentology》1989,36(5):793-819
The Cretaceous of west James Ross Island, Antarctica represents the proximal fill of a late Mesozoic back-arc basin that was probably initiated by oblique extension during the early development of the Weddell Sea. The succession records sedimentation in two contrasting depositional systems: a laterally persistent slope apron flanking the faulted basin margin interrupted both spatially and temporally by coarse-grained submarine fans. Slope apron deposits are dominated by thinly interbedded turbiditic sandstones and mudstones (mudstone association), interspersed with non-channelized chaotic boulder beds, intraformational slump sheets and isolated exotic blocks representing a spectrum of mass-flow processes from debris flow to submarine gliding. Localized sand-rich sequences (sandstone-breccia association) represent sandy debris lobes at the mouths of active slope chutes. The submarine fan sediments (conglomerate association) are typified by coarse conglomerates and pebbly sandstones, interpreted as the deposits of high-density turbidity currents and non-cohesive debris flows. Three assemblages are recognized and are suggested to represent components of the inner channelled zone of coarse-grained submarine fans, from major fan channels through ephemeral, marginal channels or terraces to levee or interchannel environments. The occurrence of both slope apron and submarine fan depositional systems during the Early and Mid-Cretaceous is attributed to localized input of coarse arc-derived sediment along a tectonically active basin margin. Periods of extensive fan development were probably linked to regional tectonic uplift and rejuvenation of the arc source region; cyclicity within individual fan sequences is attributed to migration or switching of fan channels or canyons. Slope apron sedimentation was controlled largely by intrabasinal tectonics. Local unconformities and packets of amalgamated slide sheets and debris flow deposits probably reflect episodic movement on basin margin faults. Differential subsidence across the basin margin anchored the basin slope for at least 20 Myr and precluded basinward progradation of shallow marine environments.  相似文献   

7.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

8.
Vertical sequence analysis within 1500-2500 m thick coarse-grained coalfield successions allows six sedimentary associations to be distinguished. These are interpreted in terms of depositional environments on, or related to alluvial fans which fringed a fault bounded source region. (i) Topographic valley and fanhead canyon fills: occurring at the bases of the coalfield successions and comprising sporadically reddened, scree, conglomeratic thinning and fining upward sequences, and fine-grained coal-bearing sediments. (ii) Alluvial fan channels: conglomerate and sandstone filled. (iii) Mid-fan conglomeratic and sandstone lobes: laterally extensive, thickly bedded (1-25 m) and varying from structureless coarse conglomerates and pebbly sandstones, to stratified fine conglomerates and cross-bedded sandstones. (iv) Interlobe and interchannel: siltstones, fine-grained sheet sandstones, abundant floras, thin coals and upright trees. (v) Distal fan: 10 cm-1.5 m thick sheet sandstones which preserve numerous upright trees, separated by silt-stones and mudstones with abundant floras, and coal seams. The sheet sandstones and normally arranged in sequences of beds which become thicker and coarser or thinner and finer upwards. These trends also occur in combination. (vi) Lacustrine: coals, limestones, and fine-grained, low-energy, regressive, coarsening upward sequences. Proximal fan sediments are only preserved in certain basal deposits of these coalfields. The majority of the successions comprise mid and distal alluvial fan and lacustrine sediments. Mid-fan depositional processes consisted of debris flows and turbulent streamflows, whilst sheetfloods dominated active distal areas. A tropical and seasonal climate allowed vegetation to colonize abandoned fan surfaces and perhaps resulted in localized diagenetic reddening. Worked coals, from 10s cm-20 m thick, occur in the distal fan and lacustrine environments. These alluvial fan deposits infill‘California-like’basins developed and preserved along major structural zones. In many of their characteristics, in particular the occurrence of thinning and fining, and thickening and coarsening upward sequences and megasequences, these sediments have similarities to documented ancient submarine fan deposits.  相似文献   

9.
The down‐dip portion of submarine fans comprises terminal lobes that consist of various gravity flow deposits, including turbidites and debrites. Within lobe complexes, lobe deposition commonly takes place in topographic lows created between previous lobes, resulting in an architecture characterized by compensational stacking. However, in some deep water turbidite systems, compensational stacking is less prominent and progradation dominates over aggradation and lateral stacking. Combined outcrop and subsurface data from the Eocene Central Basin of Spitsbergen provide a rare example of submarine fans that comprise progradationally stacked lobes and lobe complexes. Evidence for progradation includes basinward offset stacking of successive lobe complexes, a vertical change from distal to proximal lobe environments as recorded by an upward increase in bed amalgamation, and coarsening and thickening upward trends within the lobes. Slope clinoforms occur immediately above the lobe complexes, suggesting that a shelf‐slope system prograded across the basin in concert with deposition of the lobe complexes. Erosive channels are present in proximal axial lobe settings, whereas shallow channels, scours and terminal lobes dominate further basinward. Terminal lobes are classified as amalgamated, non‐amalgamated or thin‐bedded, consistent with turbidite deposition in lobe axis, off‐axis and fringe settings, respectively. Co‐genetic turbidite–debrite beds, interpreted as being deposited from hybrid sediment gravity flows which consisted of both turbulent and laminar flow phases, occur frequently in lobe off‐axis to fringe settings, and are rare and poorly developed in channels and axial lobe environments. This indicates bypass of the laminar flow phase in proximal settings, and deposition in relative distal unconfined settings. Palaeocurrent data indicate sediment dispersal mainly towards the east, and is consistent with slope and lobe complex progradation perpendicular to the NNW–SSE trending basin margin.  相似文献   

10.
The Late Cretaceous Gürsökü Formation represents the proximal fill of the Sinop–Samsun Forearc Basin that was probably initiated by extension during the Early Cretaceous. The succession records sedimentation in two contrasting depositional systems: a slope-apron flanking a faulted basin margin and coarse-grained submarine fans. The slope-apron deposits consist of thinly bedded turbiditic sandstones and mudstones, interbedded with non-channelized chaotic boulder beds and intraformational slump sheets representing a spectrum of processes ranging from debris flow to submarine slides. The submarine fan sediments are represented by conglomerates and sandstones interpreted as deposited from high density turbidity currents and non-cohesive debris flows. The occurrence of both slope apron and submarine fan depositional systems in the Gürsökü Formation may indicates that the region was a tectonically active basin margin during the Late Cretaceous.  相似文献   

11.
The Upper Cretaceous Cerro Toro Formation in the Silla Syncline, Parque Nacional Torres del Paine, Magallanes Basin, Chile, includes over 1100 m of mainly thin‐bedded mud‐rich turbidites containing three thick divisions of coarse conglomerate and sandstone. Facies distributions, stacking patterns and lateral relationships indicate that the coarse‐grained sandstone and conglomerate units represent the fill of a series of large south to south‐east trending deep‐water channels or channel complexes. The middle coarse division, informally named the Paine member, represents the fill of at least three discrete channels or channel complexes, termed Paine A, B and C. The uppermost of these, Paine C, represents a channel belt about 3·5 km wide and its fill displays explicit details of channel geometry, channel margins, and the processes of channel development and evolution. Along its northern margin, Paine C consists of stacked, laterally offset channels, each eroded into fine‐grained mudstone and thin‐bedded sandy turbidites. Along its southern margin, the Paine C complex was bounded by a single, deeply incised but stepped erosional surface. The evolution of the Paine C channel occurred through multiple cycles of activity, each involving: (i) an initial period of channel erosion into underlying fine‐grained sediments; (ii) deposition of coarse‐grained pebble to cobble conglomerate and sandstone within the channel; and (iii) waning of coarse sediment deposition and accumulation of a widespread sheet of fine‐grained, thin‐bedded turbidites inside and outside the channel. The thin‐bedded turbidites deposited within, and adjacent to, the channel along the northern margin of the Paine C complex do not appear to represent levée deposits but, rather, a separate fine‐grained turbidite system that impinged on the Paine C channel from the north. The Cerro Toro channel complex in the Silla Syncline may mark either an early axial zone of the Magallanes Basin or a local slope mini‐basin developed behind a zone of slope faulting and folding now present immediately east of the syncline. If the latter, flows moving downslope toward the basin axis further east were diverted to the south by this developing structural high, deposited part of their coarse sediment loads, and exited the mini‐basin at a point located near the south‐eastern edge of the present Silla Syncline.  相似文献   

12.
珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析   总被引:7,自引:1,他引:6  
根据已钻井取芯段岩相分析,从荔湾3-1气田珠江组深水扇沉积体系中划分出巨厚层和厚层块状砂岩相、厚层正粒序砂岩相、厚层逆粒序砂岩相、平行—板状斜层理砂岩相、滑塌变形砂岩相、薄层砂岩夹层相、薄层(粉)砂岩与泥岩互层相、厚层粉砂岩相、厚层泥岩相和层状深水灰岩相等10种岩相类型和识别出砂岩相组合、泥岩相组合、(粉)砂岩与泥岩互...  相似文献   

13.
Two Palaeogene fluvial fan systems linked to the south‐Pyrenean margin are recognized in the eastern Ebro Basin: the Cardona–Súria and Solsona–Sanaüja fans. These had radii of 40 and 35 km and were 800 and 600 km2 in area respectively. During the Priabonian to the Middle Rupelian, the fluvial fans built into a hydrologically closed foreland basin, and shallow lacustrine systems persisted in the basin centre. In the studied area, both fans are part of the same upward‐coarsening megasequence (up to 800 m thick), driven by hinterland drainage expansion and foreland propagation of Pyrenean thrusts. Fourteen sedimentary facies have been grouped into seven facies associations corresponding to medial fluvial fan, channelized terminal lobe, non‐channelized terminal lobe, mudflat, deltaic, evaporitic playa‐lake and carbonate‐rich, shallow lacustrine environments. Lateral correlations define two styles of alluvial‐lacustrine transition. During low lake‐level stages, terminal lobes developed, whereas during lake highstands, fluvial‐dominated deltas and interdistributary bays were formed. Terminal lobe deposits are characterized by extensive (100–600 m wide) sheet‐like fine sandstone beds formed by sub‐aqueous, quasi‐steady, hyperpycnal turbidity currents. Sedimentary structures and trace fossils indicate rapid desiccation and sub‐aerial exposure of the lobe deposits. These deposits are arranged in coarsening–fining sequences (metres to tens of metres in thickness) controlled by a combination of tectonics, climatic oscillations and autocyclic sedimentary processes. The presence of anomalously deeply incised distributary channels associated with distal terminal lobe or mudflat deposits indicates rapid lake‐level falls. Deltaic deposits form progradational coarsening‐upward sequences (several metres thick) characterized by channel and friction‐dominated mouth‐bar facies overlying white‐grey offshore lacustrine facies. Deltaic bar deposits are less extensive (50–300 m wide) than the terminal lobes and were also deposited by hyperpycnal currents, although they lack evidence of emergence. Sandy deltaic deposits accumulated locally at the mouths of main feeder distal fan streams and were separated by muddy interdistributary bays; whereas the terminal lobe sheets expand from a series of mid‐fan intersection points and coalesced to form a more continuous sandy fan fringe.  相似文献   

14.
Sandy lobe deposits on submarine fans are sensitive recorders of the types of sediment gravity flows supplied to a basin and are economically important as hydrocarbon reservoirs. This study investigates the causes of variability in 20 lobes in small late Pleistocene submarine fans off East Corsica. These lobes were imaged using ultra‐high resolution boomer seismic profiles (<1 m vertical resolution) and sediment type was ground truthed using piston cores published in previous studies. Repeated crossings of the same depositional bodies were used to measure spatial changes in their dimensions and architecture. Most lobes increase abruptly down‐slope to a peak thickness of 8 to 42 m, beyond which they show a progressive, typically more gradual, decrease in thickness until they thin to below seismic resolution or pass into draping facies of the basin plain. Lobe areas range from 3 to 70 km2 and total lengths from 2 to 14 km, with the locus of maximum sediment accumulation from 3 to 28 km from the shelf‐break. Based on their location, dimensions, internal architecture and nature of the feeder channel, the lobes are divided into two end‐member types. The first are small depositional bodies located in proximal settings, clustered near the toe‐of‐slope and fed by slope gullies or erosive channels lacking or with poorly developed levées (referred to as ‘proximal isolated lobes’). The second are larger architecturally more complex depositional bodies deposited in more distal settings, outboard more stable and longer‐lived levéed fan valleys (referred to as ‘composite mid‐fan lobes’). Hybrid lobe types are also observed. At least three hierarchical levels of compensation stacking are recognized. Individual beds and bed‐sets stack to form lobe‐elements; lobe‐elements stack to form composite lobes; and composite lobes stack to form lobe complexes. Differences in the size, shape and architectural complexity of lobe deposits reflect several inter‐related factors including: (i) flow properties (volume, duration, grain‐size, concentration and velocity); (ii) the number and frequency of flows, and their degree of variation through time; (iii) gradient change and sea floor morphology at the mouth of the feeder conduit; (iv) lobe lifespan prior to avulsion or abandonment; and (v) feeder channel geometry and stability. In general, lobes outboard stable fan valleys that are connected to shelf‐incised canyons are wider, longer and thicker, accumulate in more basinal locations and are architecturally more complex.  相似文献   

15.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

16.

The Upper Cambrian Owen Conglomerate of the West Coast Range, western Tasmania, comprises two upward‐fining successions of coarse‐grained siliciclastic rocks that exhibit a characteristic wedge‐shaped fill controlled by the basin‐margin fault system. Stratigraphy is defined by the informally named basal lower conglomerate member, middle sandstone member, middle conglomerate member and upper sandstone member. The lower conglomerate member has a gradational basal contact with underlying volcaniclastics of the Tyndall Group,while the upper sandstone member is largely conformable with overlying Gordon Group marine clastics and carbonates. The lower conglomerate member predominantly comprises high flow regime, coarse‐grained, alluvial‐slope channel successions, with prolonged channel bedload transport exhibited by the association of channel‐scour structures with upward‐fining packages of pebble, cobble and boulder conglomerate and sandstone, with abundant large‐scale cross‐beds derived from accretion in low‐sinuosity, multiply active braided‐channel complexes. While the dipslope of the basin is predominantly drained by west‐directed palaeoflow, intrabasinal faulting in the southern region of the basin led to stream capture and the subsequent development of axial through drainage patterns in the lower conglomerate member. The middle sandstone member is characterised by continued sandy alluvial slope deposition in the southern half of the basin, with pronounced west‐directed and local axial through drainage palaeoflow networks operating at the time. The middle sandstone member basin deepens considerably towards the north, where coarse‐grained alluvial‐slope deposits are replaced by coarse‐grained turbidites of thick submarine‐fan complexes. The middle conglomerate member comprises thickly bedded, coarse‐grained pebble and cobble conglomerate, deposited by a high flow regime fluvial system that focused deposition into a northern basin depocentre. An influx of volcanic detritus entered the middle conglomerate member basin via spatially restricted footwall‐derived fans on the western basin margin. Fluvial systems continued to operate during deposition of the upper sandstone member in the north of the basin, facilitated by multiply active, high flow regime channels, comprising thick, vertically stacked and upward‐fining, coarse‐grained conglomerate and sandstone deposits. The upper sandstone member in the south of the basin is characterised by extensive braid‐delta and fine‐grained nearshore deposits, with abundant bioturbation and pronounced bimodal palaeocurrent trends associated with tidal and nearshore reworking. An increase in base‐level in the Middle Ordovician culminated in marine transgression and subsequent deposition of Gordon Group clastics and carbonates.  相似文献   

17.
Abstract Analysis of extensive exposures of the Permian Laingsburg Formation, Karoo basin, South Africa, have enabled a detailed reconstruction of the base of slope stratigraphy and palaeoenvironments in a deep-water system characterized by a very narrow grain-size range (fine sandstone). The deposits include an ≈ 4 km wide and 80 m thick channel complex, fringed by sandy sheet deposits that extend laterally for at least 6 km across depositional strike. Within the channel complex, individual channel fills are marked by shallow basal erosion surfaces draped by thin, parallel-stratified beds of very fine sandstone and siltstone, interpreted as flow tails to largely bypassing flows. These thin beds are overlain by 0·4 to 5 m thick beds of structureless, fine-grained sandstone that represent the majority of the channel fills. The basal packages may be partially to completely removed by localized scour in the axial zone of the channel complex but can be mapped laterally into overbank areas where they thicken and are dominated by rippled fine sandstones with intercalated siltstones. Axial confinement resulted from subtle topography on the basin floor, whereby the lower, dense parts of the initially erosive and bypassing flows were partially confined in the lows and the more dilute, slower moving upper parts of the flows deposited sheet-like successions across slightly elevated overbank areas. The narrow grain-size distribution prohibited the formation ofcoarse-grained residual bypass deposits during the initial phases of channel formation. With decreasing magnitude, later flows became more depositional, filling remaining axial depressions with thick-bedded structureless sandstone. The smaller volumes of late-stage sediment were more axially focused, producing local scour-and-fill features and starvation of the overbank areas. Resulting grain-size vertical profiles are complex. The basal flow tail packages and overlying massive deposits form a thickening and slightly coarsening-upward trend in the channel fills. The overbank deposits show a thinning- and fining-upward profile as a result of less bypass plus late-stage starvation of sand. Application of traditional deep-water facies models could therefore potentially lead to erroneous interpretations of the channel complex as a prograding lobe and the overbank sheets as channel-fills.  相似文献   

18.
19.
Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward sedimentation, whereas alluvial fans may lack these effects. Hence the present authors hypothesize that morphodynamics on alluvial fans are determined primarily by upstream boundary conditions, whereas morphodynamics on fan deltas are determined by both the upstream and the downstream boundary condition and changes therein. To isolate the effects of the upstream and downstream boundaries, five new alluvial fan experiments are compared with the details of three fan deltas published earlier that were formed under very similar and simple conditions. Similar to the fan deltas, the alluvial fans build up by sheet flow, whilst quasi‐regular periods of incision cause temporary channelized flow. Incision is followed by channel backfilling, after which the fan returns to sheet flow. The channelization and backfilling in alluvial fans is markedly less pronounced and more prone to autogenic disturbance than in fan deltas. The difference is caused by morphodynamics at the downstream boundary. In a fan delta, the flow expansion of the channel causes deposition of all the sediment, which forms a mouth bar and causes strong backfilling. In an alluvial fan, on the other hand, the slope break at the fan perimeter causes some deposition, but transport is not reduced to zero. Consequently, the backfilling in alluvial fans is less pronounced than in fan deltas. Other published experiments support this trend: removal of the mouth bar by a river leads to permanent channelization, whilst pronounced mouth‐bar formation in highly channelized deltas promotes backward sedimentation. The experimental results for this study predict that, when alluvial fans prograde into lakes or deep rivers, they transition to fan deltas with increasingly deeper channels and thicker backfill deposits.  相似文献   

20.
ABSTRACT The middle member of the Loma del Toril formation (Kimmeridgian-Lower Tithonian, Intermediate units, Betic Cordillera) consists of up to 250 m of resedimented carbonate material. Three units have been distinguished. The lower, Unit A, is composed of conglomerates that are interpreted as deposited in a major valley on the lower slope of a basin margin. Unit B, calcarenites with some conglomerate intercalation, is interpreted as distributary channel deposits and Unit C, calcarenites, as the result of poorly developed depositional lobes of a submarine fan. The three units form a recessional sequence. They cannot be related to a transgression because the Kimmeridgian-Lower Tithonian in the Prebetic zone, where epicontinental sediments exist, is clearly regressive. The upper member of the Loma del Toril formation, made up of pelagic limestones with sporadic calcarenites or even thin conglomerate intercalations, is best interpreted as a basin plain facies. Lateral facies relationships suggest that down-faulting of the basin floor controlled the development of the fan. The scarce occurrence of turbidite beds in the basin plain facies, the prevailing channelized facies and the obvious lack of overbank deposits, suggest a transport system of low efficiency, with fan deposition at the base of slope. The underlying Jurassic strata cropping out along fault scarps, coeval carbonate shelf material, and upper slope deposits were the main sources of turbiditic resediments. With respect to basin morphology sedimentary processes and fan geometry, this Jurassic turbidite basin can be compared with the modern California continental borderland. Ancient analogues have been described by Reinhart (1977) and Price (1977).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号