首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

2.
b
As a supplement to seismic profiling surveys, crustal thicknesses have been estimated for 11 Fennoscandian seismograph stations equipped with three-component long period instruments, using the so-called spectral ratio technique of Phinney. The largest Moho depths, of the order of 45 km, were found for stations located in the north-east areas of Norway and Sweden and in Finland, with a local maximum in the Bothnian Bay. The coastal area of south-east Norway and Zealand, Denmark exhibit crustal thicknesses in the range 28–33 km. The agreement between our results and those obtained by conventional refraction profiling is good, when this comparison is restricted to profiles of lengths 300 km or more, and when the associated crustal thickness estimate is averaged over the central parts of the profiles in question. Also, a comparison between our results and other available geophysical information gives that the oldest tectonic provinces of the Baltic Shield also are characterized by relatively modest heat flow, and exhibit the greatest crustal thicknesses. Post-glacial uplift data and large wavelength free air gravity data appear to be uncorrelated with crustal thickness. The same partly applies to Bouguer gravity anomalies, thus implying that the isostatic compensation mechanism in Fennoscandia is of both Airy and Pratt type.  相似文献   

3.
Recent seismic field work has revealed high lower-crustal velocities under Ninetyeast Ridge, Indian Ocean, indicating the presence of crustal underplating ( Grevemeyer et al . 2000 ). We used results from Ocean Drilling Program (ODP) drill cores and cross-spectral analysis of gravity and bathymetric data to study the impact of the underplating body on the subsidence history and the mode of isostatic compensation along Ninetyeast Ridge. Compared with the adjacent Indian basin, the subsidence of Ninetyeast Ridge is profoundly anomalous. Within the first few millions of years after crustal emplacement the ridge subsided rapidly. Thereafter, however, subsidence slowed down significantly. The most reliable model of isostasy suggests loading of a thin elastic plate on and beneath the seafloor. Isostatic compensation of subsurface loading occurs at a depth of about 25 km, which is in reasonably good agreement with seismic constraints. Subsurface loading is inherently associated with buoyant forces acting on the lithosphere. The low subsidence may therefore be the superposition of cooling of the lithosphere and uplift due to buoyant material added at the base of the crust. A model including prolonged crustal growth in the form of subcrustal plutonism may account for all observations.  相似文献   

4.
Summary. Six gravity and bathymetry profiles perpendicular to the Kane fracture zone, each more than 300 km long, were gathered to study the variation in crustal structure in the vicinity of a major fracture zone and the gravitational edge effect at the contact between lithosphere of two different ages. A spectral analysis of the gravity and bathymetric series as a function of wavelength shows that the gravitational edge effect is only significant at the longest wavelengths. For remaining wavelengths the admittance, the ratio of the amplitude of the gravity anomaly to the amplitude of the bathymetry, is best explained by a model of isostasy in which topographic loads are partially supported by the flexural rigidity of an elastic plate, about 6 km in thickness. After subtracting the gravitational attraction of the bathymetry and its compensation, substantial isostatic anomalies remain. We interpret these anomalies as being caused by variations in crustal thickness which have little correlation with surface topography, except at very long wavelengths. The apparent crustal thickness varies by as much as a factor of 2, but there is no evidence indicating systematic thinning of the crust beneath the fracture zone. Our data do suggest that such density variations within the plate are also compensated by the isostatic response of an elastic plate but with very different effect from those at the surface. This indicates that there are two different modes of crustal formation with different gravity and topographic signatures: effusive volcanism which loads the surface of the elastic plate producing both topographic relief and coherent gravity anomalies, and intrusive volcanism or underplating producing gravity anomalies but little topographic relief.  相似文献   

5.
This paper describes a method for determining Moho depth, lithosphere thinning factor (γ= 1 − 1/β) and the location of the ocean–continent transition at rifted continental margins using 3-D gravity inversion which includes a correction for the large negative lithosphere thermal gravity anomaly within continental margin lithosphere. The lateral density changes caused by the elevated geotherm in thinned continental margin and adjacent ocean basin lithosphere produce a significant lithosphere thermal gravity anomaly which may be in excess of −100 mGal, and for which a correction must be made in order to determine Moho depth accurately from gravity inversion. We describe a method of iteratively calculating the lithosphere thermal gravity anomaly using a lithosphere thermal model to give the present-day temperature field from which we calculate the lithosphere thermal density and gravity anomalies. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (γ= 1 − 1/β) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. For oceanic lithosphere, the lithosphere thermal model used to predict the lithosphere thermal gravity anomaly may be conditioned using ocean isochrons from plate reconstruction models to provide the age and location of oceanic lithosphere. A correction is made for crustal melt addition due to decompression melting during continental breakup and seafloor spreading. We investigate the sensitivity of the lithosphere thermal gravity anomaly and the predicted Moho depth from gravity inversion at continental rifted margins to the methods used to calculate and condition the lithosphere thermal model using both synthetic models and examples from the North Atlantic.  相似文献   

6.
The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m?3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of ca. 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.  相似文献   

7.
ABSTRACT The intracratonic basins of central Australia are distinguished by their large negative Bouguer gravity anomalies, despite the absence of any significant topography. Over the Neoproterozoic to Palaeozoic Officer Basin, the anomalies attain a peak negative amplitude in excess of 150 mGal, amongst the largest of continental anomalies observed on Earth. Using well data from the Officer and Amadeus basins and a data grid of sedimentary thicknesses from the eastern Officer Basin, we have assessed the evolution of these intracratonic basins. One-dimensional backstripping analysis reveals that Officer and Amadeus basin tectonic subsidence was not entirely synchronous. This implies that the basins evolved as discrete geological features once the Centralian Superbasin was dismembered into its constituent basins. Two- and three-dimensional backstripping and gravity modelling suggest that the eastern Officer Basin evolved from a broad continental sag into a region of intracratonic flexural subsidence from the latest Neoproterozoic, when flexure of the lithosphere deepened the northern basin. The results from gravity modelling improve when the crust is thickened beneath the northern margin of the basin and thinned at the southern margin, as has been suggested by recent deep seismic data. The crustal thickening beneath the basin's northern margin abuts the region of greatest topographic relief and is consistent with the observed structure at the edges of many orogenic belts. If the Officer Basin evolved as a foreland-type basin from the late Proterozoic and has retained those features to the present, then one implication is that in the absence of any significant topography, cratonic lithosphere must be able to support stresses over very long periods of geological time.  相似文献   

8.
Two Early Cenozoic rifts in Southeast Asia (beneath the Pattani and Malay basins) experienced only limited upper-crustal extension (β≤1.5); yet very thick post-rift sequences are present, with 6–12 km of Late Cenozoic terrestrial and shallow-marine sediment derived from adjacent sources. Conventional post-rift backstripping requires depth-dependent lithospheric thinning by β=2–4 to explain these tremendous thicknesses. We assess an alternative explanation for this post-rift subsidence, involving lower-crustal flow from beneath these basins in response to lateral pressure-gradients induced by the sediment loads and the negative loads arising from the erosion of their sediment sources. We calculate that increased rates of erosion in western Thailand in the Early Miocene placed the crust in a non-steady thermal state, such that the depth (and thus, the pressure) at the base of the brittle upper crust subsequently varied over time. Following such a perturbation, thermal and mass-flux steady-state conditions took millions of years to re-establish. In the meantime, the lateral pressure-gradient caused net outflow of lower crust, thinning the crust beneath the depocentre by several kilometres (mimicking the isostatic effect of greater crustal extension having occurred beforehand) and thickening it beneath the sediment source region. The local combination of hot crust and high rates of surface processes, causing lower-crustal flow to be particularly vigorous and thus making its effects more readily identifiable, means that the Pattani and Malay basins represent a set of conditions different from basins in many other regions. However, lower-crustal flow induced by surface processes will also occur to some extent, but less recognisably, in many other continental crustal provinces, but its effects may be mistaken for those of other processes, such as larger-magnitude stretching and/or depth-dependent stretching.  相似文献   

9.
We study the tectonic setting and lithospheric structure of the greater Barents Sea region by investigating its isostatic state and its gravity field. 3-D forward density modelling utilizing available information from seismic data and boreholes shows an apparent shift between the level of observed and modelled gravity anomalies. This difference cannot be solely explained by changes in crustal density. Furthermore, isostatic calculations show that the present crustal thickness of 35–37 km in the Eastern Barents Sea is greater than required to isostatically balance the deep basins of the area (>19 km). To isostatically compensate the missing masses from the thick crust and deep basins and to adequately explain the gravity field, high-density material (3300–3350 kg m−3) in the lithospheric mantle below the Eastern Barents Sea is needed. The distribution of mantle densities shows a regional division between the Western and Eastern Barents and Kara Seas. In addition, a band of high-densities is observed in the lower crust along the transition zone from the Eastern to Western Barents Sea. The distribution of high-density material in the crust and mantle suggests a connection to the Neoproterozoic Timanide orogen and argues against the presence of a Caledonian suture in the Eastern Barents Sea. Furthermore, the results indicate that the basins of the Western Barents Sea are mainly affected by rifting, while the Eastern Barents Sea basins are located on a stable continental platform.  相似文献   

10.
A Bouguer gravity anomaly map of the NW Himalayas and parts of the Kohistan/Hindukush region has been prepared using all available gravity data. Analysis of the gravity field has been carried out along a profile extending from Gujranwala (located near the edge of the Indian shield) to the Haramosh massif in a NNE–SSW direction. The gravity profile is located close to the DSS profile shot under the USSR–India scientific collaborative programme. Velocity information available along different parts of the profile has been used to infer values of crustal and upper mantle density.
The observed gravity field (Bouguer) has been interpreted in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted as increasing from nearly 35 km near the edge of the Indian shield to 75 km (below sea-level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high-density lower-crustal rocks appear to have been emplaced in the upper part along the main mantle thrust. The nature of isostatic compensation prevailing underneath the Himalayas has been discussed, as has the theory of lithospheric flexure proposed by Karner & Watts and Lyon-Caen & Molnar. It is felt that although these ideas explain the broad features of the Moho configuration as observed in the NW Himalayas, there are significant departures. The role of tectonic forces in shaping the Moho and causing changes in the density of the crust cannot be denied.  相似文献   

11.
Deep seismic reflectors in the Campos basin, offshore Brazil   总被引:1,自引:1,他引:0  
Summary. Some deep crustal features underlying the Campos basin are best recognized in a few reflection seismic sections that have been reprocessed recently to 10 s two-way traveltime. A prominent climbing-to-the-basin reflector is interpreted as the Moho, and a relatively steep fracture zone is, probably, the first example so far of an extensional fault crossing the whole crust and offsetting the Moho. Further constraints on the deep structure of the basin are provided by estimating the thinning of the crust from shallow seismic data and gravity modelling, and by cross-plotting backstripped subsidence curves against curves predicted by the lithospheric stretching model.  相似文献   

12.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

13.
The rifting history of the Atlantic continental margin of Newfoundland is very complex and so far has been investigated at the crustal scale primarily with the use of 2-D seismic surveys. While informative, the results generated from these surveys cannot easily be interpreted in a regional sense due to their sparse sampling of the margin. A 3-D gravity inversion of the free air data over the Newfoundland margin allows us to generate a 3-D density anomaly model that can be compared with the seismic results and used to gain insight into regions lacking seismic coverage. Results of the gravity inversion show good correspondence with Moho depths from seismic results. A shallowing of the Moho to 12 km depth is resolved on the shelf at the northern edge of the Grand Banks, in a region poorly sampled by other methods. Comparisons between sediment thickness and crustal thickness show deviations from local isostatic compensation in locations which correlate with faults and rifting trends. Such insights must act as constraints for future palaeoreconstructions of North Atlantic rifting.  相似文献   

14.
A wide-angle seismic profile across the western peninsulas of SW Ireland was performed. This region corresponds to the northernmost Variscan thrust and fold deformation. The dense set of 13 shots and 109 stations along the 120  km long profile provides a detailed velocity model of the crust.
  The seismic velocity model, obtained by forward and inverse modelling, defines a five-layer crust. A sedimentary layer, 5–8  km thick, is underlain by an upper-crustal layer of variable thickness, with a base generally at a depth of 10–12  km. Two mid-crustal layers are defined, and a lower-crustal layer below 22  km. The Moho lies at a depth of 30–32  km. A low-velocity zone, which coincides with a well-defined gravity low, is observed in the central part of the region and is modelled as a Caledonian granite which intruded upper-crustal basement. The granite may have acted as a buffer to northward-directed Variscan thrusting. The Dingle–Dungarvan Line (DDL) marks a major change in sedimentary and crustal velocity and structure. It lies immediately to the north of the velocity and gravity low, and shows thickness and velocity differences in many of the underlying crustal layers and even in the Moho. This suggests a deep, pre-Variscan control of the structural development of this area. The model is compatible with thin-skinned tectonics, which terminated at the DDL and which incorporated thrusts involving the sedimentary and upper-crustal layers.  相似文献   

15.
Summary. This paper concerns the calculation and analysis of admittance functions from large and uniform data sets of gravity and topography in four regions of the northern and western Pacific Ocean. The purpose is to separate and describe possible differences in isostatic compensation between several 'type' regions of oceanic crust: a mid-ocean ridge (Juan de Fuca), a mid-plate seamount chain (Hawaiian Ridge), fracture zone topography on old crust (north of Hawaii) and a marginal basin (Philippine Sea). Results suggest that there are significant differences in the degree to which long wavelength topography has been compensated which can be distinguished between regions. These differences are set in the perspective of three simple compensation mechanisms. Two of these consider local Airy models in which raised topography is compensated at depth either by crustal roots or low density mantle. A third considers the effects of an elastic plate of variable thickness supporting crustal variations. Conclusions are that: (a) a thick plate possibly in excess of 30 km supports the Hawaiian Ridge; (b) a much thinner plate of 5 to 15 km existed when the fracture zone topography was formed; (c) the Juan de Fuca Ridge is compensated either regionally by a plate 5 to 10 km thick or locally by sub-crustal low densities at depths of 15 to 20 km; and (d) the Philippine Sea shows no evidence for regional support: ridges are compensated locally by differences in crustal thickness whereas the basins are underlain by density variations at depths comparable to those of the much younger Juan de Fuca Ridge. The major difference between admittance functions for the Philippine Sea and comparably aged regions of the north Pacific Ocean adds further new evidence of possible evolutionary differences between it and normal ocean basins.  相似文献   

16.
Gravity studies of the Rockall and Exmouth Plateaux using SEASAT altimetry   总被引:1,自引:0,他引:1  
Abstract SEASAT altimetric measurements are used to determine the gravity anomalies across two passive continental margins: the western margin of the Rockall Plateau, UK, and the Exmouth Plateau off north-west Australia. The small gravity anomalies observed over the starved western margin of the Rockall Plateau require the existence of a major density contrast within the crust, as well as the Moho, and show that the elastic thickness is less than 5 km at the time of rifting. The gravity anomaly over the Exmouth Plateau is compared with the gravity anomaly calculated from the sediment loading of a thin elastic plate, taking account of the variation in crustal thickness. This comparison shows that the Exmouth Plateau also has a small effective elastic thickness of 5 km, even for loads emplaced between 60 and 120 Myr after rifting. Elastic thicknesses of about 5 km have also been reported for other sedimentary basins, and are to be expected if the rheological properties of the crust and mantle depend on the ratio of the present temperature to the melting temperature. Flexural effects are therefore likely to be of minor importance in sedimentary basins.  相似文献   

17.
Regional seismic reflection profiles tied to lithological and biostratigraphic data from deep exploration wells have been used to determine the structure and evolution of the poorly known basins of northern Somalia. We recognize six major tectonostratigraphic sequences in the seismic profiles: Middle‐Late Jurassic syn‐rift sequences (Adigrat and Bihen Group), ?Cenomanian‐Campanian syn‐rift sequences (Gumburo Group), Campanian‐Maastrichtian syn‐rift sequences (Jesomma Sandstones), Palaeocene post‐rift sequences (Auradu Limestones), Early‐Middle Eocene post‐rift sequences (Taleh Formation) and Oligocene‐Miocene (Daban Group) syn‐rift sequences. Backstripping of well data provides new constraints on the age of rifting, the amount of crustal and mantle extension, and the development of the northern Somalia rifted basins. The tectonic subsidence and uplift history at the wells can be explained by a uniform extension model with three episodes of rifting punctuated by periods of relative tectonic quiescence and thermal subsidence. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr and had a NW‐SE trend. We interpret the rift as a late stage event associated with the break‐up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20–40 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi‐rift extensional model with stretching factor, β, of 1.09–1.14 and 1.05–1.28 for the first and second rifting events, respectively. The model, fails, however, to completely explain the slow subsidence and uplift history of the margin during Early Cretaceous to Late Cretaceous. We attribute this slow subsidence to the combined effect of a sea‐level fall and regional uplift, which caused a major unconformity in northern Somalia. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift developed along the Gulf of Aden and reactivated the Guban, Nogal and Daroor basins, and is related to the opening of the Gulf of Aden. As a result of these events the crust and upper mantle were thinned by up to a factor of two in some basins. In addition, several distinct petroleum systems developed. The principal exploration play is for Mesozoic petroleum systems with the syn‐rift Oligocene‐Miocene as a subordinate objective owing to low maturity and seal problems. The main seals for the different plays are various shales, some of which are also source rocks, but the Early Eocene evaporites of the Taleh formations can also perform a sealing role for Palaeogene or older generated hydrocarbons migrating vertically.  相似文献   

18.
张赤军 《极地研究》2001,13(4):273-282
在山区 ,尤其是在有全球第三极之称的喜马拉雅山区 ,当相邻点间距不大时 ,如何利用这些点上的重力与地形 (高程 )数据推估待求点的重力值 ,这对难以攀登和不能用仪器观测的山峰很有意义。研究指出 ,在地形负荷的波长很短时 ,具有一定强度的地壳足以能够支撑这种负荷 ,因此 ,不能用Airy Heiskanen和Pratt Hayford局部补偿模型作重力推估 ;由于空间异常主要受地形起伏制约 ,因此借助于邻近重力点的地形 (高程 )作推估会得到满意的结果。基于这一思路 ,我们采用了 4种有关公式 ,有效地推估了第三极之巅珠穆朗玛峰顶上的重力值 ,该值为(976 970± 7)× 1 0 - 5m·s- 2 。这一结果为精确推求珠峰大地水准面和正高提供了必要的数据 ,若用均衡的方法来推估 ,则可能相差近 1 0 0× 1 0 - 5m·s- 2 。  相似文献   

19.
Summary . Plots of seismic velocity and density of rock samples show that a range of densities is possible for rocks of each seismic velocity and vice versa. although a single linear relationship is often assumed in crustal gravity calculations. Because of the scatter, whenever rocks of known seismic velocity are converted to density using this relationship, a reduction is made to the resolving power of the resulting gravity calculation. If these rocks reach thicknesses of more than a few kilometres, then the uncertainties become significant when compared with the size of commonly observed gravity anomalies. Examples are considered from the North Sea, Mississippi and Carolina Trough. It is concluded that the use of a seismic velocity measurement as the only indication of rock density does not provide a useful constraint when attempting to reproduce observed gravity variations. An appropriate model for isostatic compensation is probably the most important factor for successful predictions of crustal structure on the basis of gravity data.  相似文献   

20.
Summary. New gravity observations from a systematic survey of the Eastern Mediterranean Sea and from a reconnaissance land survey in Central and Western Turkey have been compiled with existing data. Lack of sufficient geological and geophysical information precludes an analysis of the local anomalies or crustal structure; however, implications of the topography and gravity field at long wavelengths have been examined. Negative free-air anomalies characterize almost the entire Eastern Mediterranean basin and positive anomalies predominate in Turkey and the Aegean Sea. The change in sign coincides with the northern boundary of the African plate, and the wavelength and amplitude of the gravity variation are of the order of 1000 km and 100 mgal respectively. The lithosphere is probably unable to support such anomalies because the implied shear stresses are too large. The source of the anomalies is concluded to be in the asthenosphere where the low finite strength of material suggests that some sort of flow must exist to maintain the stresses. A good correlation is observed between the gravity and topography at wavelengths greater than 300 km; and the relationship is the same as that observed in the North Atlantic and the Central Pacific, as well as that computed for simple models of mantle convection. The gravity and topography of the Eastern Mediterranean can be explained in terms of flow in the upper mantle. This is the first region of subsidence for which this interpretation has been made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号