首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Hydrographic mesoscale structures in the North-western Alboran Sea show a high variability induced by a number of different factors. One of the most important is the differences in atmospheric pressure over the Mediterranean basin when compared to the Gulf of Cádiz. This difference modulates the zonal wind field in the Alboran Sea and the intensity of the Atlantic inflow through the Strait of Gibraltar, also affecting the formation and extension of the Western Alboran Gyre (WAG). When westerly winds are dominant, lower atmospheric pressure in the Mediterranean enhances the inflow of Atlantic waters causing the Atlantic Jet to be located in the vicinity of the Spanish shore, creating a well-defined frontal zone in front of Estepona Cove. In this situation, the coastal upwelling is enhanced, leading to a minimum in sea surface temperature and a maximum of surface nutrient concentrations located in the coastal area. The vertical position of the chlorophyll maximum found in these circumstances appeared to be controlled by the nutrient availability. On the other hand, when easterly winds prevail, higher atmospheric pressure in the Mediterranean leads to a reduced inflow and the oceanographic and biological structures are clearly different. The Atlantic Jet moves southward flowing in a south-eastern direction, changing the structure of the currents, resulting in an enhanced cyclonic circulation extending throughout the North-western Alboran Sea basin. These physical alterations also induce changes in the distribution of biogeochemical variables. Maximum nutrient and chlorophyll concentrations are located further off the coast in the central area of the newly created cyclonic gyre. During these easterlies periods coastal upwelling stops and the distribution of phytoplankton cells seems to be mainly controlled by physical processes such as advection of coastal waters to the open sea.  相似文献   

2.
A large set of new data concerning dissolved metal concentrations has been acquired in the Gulf of Cadiz and in the Strait of Gibraltar from 1996 to 1999. These data, associated with models (hydrodynamic, tracer advection–dispersion and mixing), have been used to assess the influence of rivers draining the South Iberian Pyrite Belt on the Gulf of Cadiz and on the Atlantic inflow in the Strait of Gibraltar.Metal concentrations in surface waters from the Gulf of Cadiz are maximal near the mouth of the Tinto/Odiel rivers with values exceeding 50 nmol/kg (Mn), 5 nmol/kg (Ni), 30 nmol/kg (Cu), 100 nmol/kg (Zn), 0.9 nmol/kg (Cd) and 45 nmol/kg (As). From the Tinto/Odiel river, a plume of contamination follows the coast in the direction of the Strait of Gibraltar. The computation of a tracer advection–dispersion model confirms that the coastal currents carry the metals discharged from the Tinto and Odiel to the Strait of Gibraltar.From temperature–salinity and metal–salinity plots, four water masses can be recognised in the Gulf of Cadiz and in the Strait of Gibraltar: North Atlantic Surface Water (NASW), North Atlantic Central Water (NACW) and metal-enriched Spanish Shelf Waters from the Gulf of Cadiz (SSW). The Mediterranean Outflow Water (MOW) is also clearly seen at depths greater than 300 m.The chemical characteristics of these various water masses have been used in a mixing model to evaluate their relative contribution to the Atlantic inflow through the Strait of Gibraltar. These contributions are seasonally variable. In June 1997, the contribution was: 80±20%, 5±5% and 15±10% for NASW, NACW and SSW, respectively. In September, the SSW contribution was apparently negligible.Finally, these relative contributions allow the evaluation of the metal fluxes in the Strait of Gibraltar. The presence of SSW in the Strait increases the metal flux to the Mediterranean Sea by a factor of 2.3 (Cu), 2.4 (Cd), 3 (Zn) and 7 (Mn). It does not modify significantly As and Ni fluxes.  相似文献   

3.
The effects of tidal forcing on the biogeochemical patterns of surface water masses flowing through the Strait of Gibraltar are studied by monitoring the Atlantic Inflow (AI) during both spring and neap tides. Three main phenomena are defined depending on the strength of the outflowing phase predicted over the Camarinal Sill: non-wave events (a very frequent phenomenon during the whole year); type I Internal wave events (a very energetic event, occurring during spring tides); and type II Internal wave events (less intense, occurring during neap tides).During neap tides, a non-wave event comprising oligotrophic open-ocean water from the Gulf of Cádiz is the most frequent and clearly dominant flow through the Strait. In this tidal condition, the inflow of North Atlantic Central Water (NACW) provides the main nutrient input to the surface layer of the Alboran Sea, supplying almost 70% of total annual nitrate transport to the Mediterranean basin. A low percentage of active and large phytoplankton cells and low average concentrations of chlorophyll (0.3–0.4 mg m−3) are found in this tidal phase. Around 50% of total annual phytoplankton biomass transport into the Mediterranean Sea through the Strait presents these oligotrophic characteristics.In contrast, during spring tides, patches of water with high chlorophyll levels (0.7–1 mg m−3) arrive intermittently, and these are recorded concurrently with the passage of internal waves coming from the Camarinal Sill (type I internal wave events). When large internal waves are arrested over the Camarinal Sill this implies strong interfacial mixing and the probable concurrent injection of coastal waters into the main channel of the Strait. These processes result in a mixed water column in the AI and can account for around 30% of total annual nitrate transport into the Mediterranean basin. Associated with type I internal wave events there is a regular inflow of large and active phytoplankton cells, transported in waters with relatively high nutrient concentrations, which constitutes a significant supply of planktonic resources to the pelagic ecosystem of the Alboran Sea (almost 30% of total annual phytoplankton biomass transport).  相似文献   

4.
The total organic carbon (TOC) and total inorganic carbon (CT) exchange between the Atlantic Ocean and the Mediterranean Sea was studied in the Strait of Gibraltar in September 1997. Samples were taken at eight stations from western and eastern entrances of the Strait and at the middle of the Strait (Tarifa Narrows). TOC was analyzed by a high-temperature catalytic oxidation method, and CT was calculated from alkalinity–pHT pairs and appropriate thermodynamic relationships. The results are used in a two-layer model of water mass exchange through the Strait, which includes the Atlantic inflow, the Mediterranean outflow and the interface layer in between. Our observations show a decrease of TOC and an increase of CT concentrations from the surface to the bottom: 71–132 μM C and 2068–2150 μmol kg−1 in the Surface Atlantic Water, 74–95 μM C and 2119–2148 μmol kg−1 in the North Atlantic Central Water, 63–116 μM C and 2123–2312 μmol kg−1 in the interface layer, and 61–78 μM C and 2307–2325 μmol kg−1 in the Mediterranean waters. However, within the Mediterranean outflow, we found that the concentrations of carbon were higher at the western side of the Strait (75–78 μM C, 2068–2318 μmol kg−1) than at the eastern side (61–69 μM C, 2082–2324 μmol kg−1). This difference is due to the mixing between the Atlantic inflow and the Mediterranean outflow on the west of the Strait, which results in a flux of organic carbon from the inflow to the outflow and an opposite flux of inorganic carbon. We estimate that the TOC input from the Atlantic Ocean to the Mediterranean Sea through the Strait of Gibraltar varies from (0.97±0.8)104 to (1.81±0.90)104 mol C s−1 (0.3×1012 to 0.56×1012 mol C yr−1), while outflow of inorganic carbon ranges from (12.5±0.4)104 to (15.6±0.4)104 mol C s−1 (3.99–4.90×1012 mol C yr−1). The high variability of carbon exchange within the Strait is due to the variability of vertical mixing between inflow and outflow along the Strait. The prevalence of organic carbon inflow and inorganic carbon outflow shows the Mediterranean Sea to be a basin of active remineralization of organic material.  相似文献   

5.
The variability of the water transport through three major straits of the Mediterranean Sea (Gibraltar, Sicily and Corsica) was investigated using a high-resolution model. This model of the Mediterranean circulation was developed in the context of the Mercator project.The region of interest is the western Mediterranean between the Strait of Gibraltar and the Strait of Sicily. The major water masses and the winter convection in the Gulf of Lions were simulated. The model reproduced the meso-scale and large-scale patterns of the circulation in very good agreement with recent observations. The western and the eastern gyres of the Alboran Sea were observed but high interannual variability was noticed. The Algerian Current splits into several branches at the longitude of the Strait of Sicily level, forming the Tyrrhenian branch, and, the Atlantic Ionian Stream and the Atlantic Tunisian Current in the eastern Mediterranean. The North Current retroflexed north of the Balearic Islands and a dome structure was observed in the Gulf of Lions. The cyclonic barotropic Algerian gyre, which was recently observed during the MATER and ELISA experiment, was evidenced in the simulation.From time-series of 10-day mean transport, the three straits presented a high variability at short time-scales. The transport was generally maximum, in April for the Strait of Gibraltar, in November for the Strait of Sicily, and in January for the Strait of Corsica. The amplitudes of the transport through the Straits of Gibraltar (0.11 Sv) and Sicily (0.30 Sv) presented a weaker seasonal variability than that of the Strait of Corsica (0.70 Sv).The study of the relation between transport and wind forcing showed that the transport through the Strait of Gibraltar is dependent on local zonal wind over short time-scales (70%), which was not the case for the other straits (less than 30%). The maximum (minimum) of the transport occurred for an eastward (westward) wind stress in the strait. An interannual event was noticed in November–December 2001, which corresponded to a very low transport (0.3 Sv), which was characterised by a cyclonic circulation in the western Alboran Sea. That circulation was also reproduced by the model for other periods than winter during the interannual simulation.The transport through the Strait of Sicily is not influenced by local wind.The wind stress curl of the northwestern Mediterranean influenced the transport through the Strait of Corsica.  相似文献   

6.
Hydroids are important components of the communities of rocky bottom shallow coastal areas. The hydrozoan fauna of the Mediterranean Sea is probably one of most investigated in the world, with lots of faunistic and biogeographical studies. However, quantitative studies using the same sampling methodology and controlled sampling effort have been restricted to areas in the Western and Central Mediterranean. We compared hydroid assemblages in four areas of the Mediterranean Sea, from the Gulf of Cádiz to the South Adriatic Sea, following the same sampling and quantification methodology. Our analysis showed the dominant Atlantic character of the assemblages of the Gulf of Cádiz and the South Alboran Sea because of the influence of the inflowing Atlantic waters. Conversely, the hydroid assemblages of the North Alboran Sea were more similar to the assemblages in the Ligurian and in the South Adriatic, and with a number of species ranking between the observed in these two Mediterranean zones. Fourteen species were identified as making the most significant contributions to characterizing the Mediterranean hydroid species pool from a quantitative point of view. These taxa include species previously named as typical components of the Mediterranean hydroid fauna as well as those only recently recorded in the region (Eudendrium moulouyensis) and invaders such as Clytia hummelincki.  相似文献   

7.
A new population of vestimentiferan tubeworms was discovered during a recent expedition to a mud volcano field in the Alboran Sea, western Mediterranean Sea. Morphological data and mitochondrial cytochrome-c-oxidase subunit 1 (COI) sequences show that the Alboran tubeworm is essentially identical to Lamellibrachia sp. found in the eastern Mediterranean. This is the first record of a vestimentiferan species in the western basin of the Mediterranean, an area with direct connection to the Atlantic via the Strait of Gibraltar and therefore of great importance to the study of distributional patterns and evolution of Mediterranean species. We examine the current hypotheses on the biogeographic distribution of vestimentiferan species in the eastern Atlantic and Mediterranean Sea and conclude that independently of when Lamellibrachia colonized the Mediterranean, neither the present hydrological settings of both Mediterranean Sea and Atlantic Ocean, nor vestimentiferans reproductive biology are impeditive to the presence of the Mediterranean species of Lamellibrachia in the NE Atlantic. The West African and Lusitanian margins are the most likely places to find living populations of this species in the NE Atlantic.  相似文献   

8.
9.
Line-transect data from sighting surveys conducted in the western Mediterranean (in 1991) and the Alboran Sea (in 1992) were analysed to estimate densities and numbers of striped and common dolphins in various areas of the western Mediterranean. Density of striped dolphins in the northwestern Mediterranean was estimated as 0.20 dolphins km−2 (CV = 0.24; 95% CI = 0.12 and 0.32) and was 41% higher than in the southwestern Mediterranean, where it was estimated as 0.12 dolphins km−2 (CV = 0.38; 95% CI = 0.05 and 0.25). The highest densities were observed in the Liguro–Provençal basin, with 0.24 dolphins km−2 (CV = 0.26; 95% CI = 0.14 and 0.40), and the Alboran Sea, with 0.20 dolphins km−2 (CV = 0.33; 95% CI = 0.10 and 0.36). These areas, and especially the Ligurian Sea, appear to be the most productive in terms of the food consumed by striped dolphins. Common dolphins were abundant only in the Alboran Sea with an estimated density of 0.16 dolphins km−2 (CV = 0.40; 95% CI = 0.08 and 0.35), scarce in the south Balearic area and almost absent in the northwestern Mediterranean. The magnitude of the dolphin by-catch in fishing operations in the Alboran Sea and other areas stresses the need for further assessment of densities and numbers, notably in the Alboran Sea and the North African Mediterranean waters.  相似文献   

10.
The study of more than 500 single- and multichannel seismic records enabled the generation of a detailed palaeo-bathymetric map of the Messinian surface over most of the Alboran Basin, Western Mediterranean. This regional surface is characterized by several erosional features (channels, terraces and canyons) and topographic highs (structural, volcanic and diapiric in origin). The most prominent feature is the incised Zanclean Channel crossing the entire basin, its entrenchment having been associated with the opening of the Strait of Gibraltar and subsequent inflow of Atlantic waters. The incision depth of the channel is variable, suggesting local variations in the erosive capacity of the Atlantic inflow, conditioned mainly by the regional basin topography and the local presence of topographic highs. Adjacent to this channel along the Spanish and Moroccan margins, and near the Strait of Gibraltar, several submarine terraces developed at different depths suggest a pulsed flooding of the Alboran Basin. There could have been two major inflow phases of Atlantic water, one shortly before and another during the Zanclean flooding, the latter accompanied by periods of relative sea-level stillstands that enabled terrace development. Alternatively, these features were all generated during the main flooding evident and subsequent pulsed infilling of the basin.  相似文献   

11.
Particulate biogenic barium (bio-Ba) fluxes obtained from three instrumented arrays moored in the Alboran Sea, the westernmost basin in the Mediterranean Sea, are presented in this study. The mooring lines were deployed over almost 1 year, from July 1997 to May 1998, and were equipped with sediment traps at 500–700 m depth, 1000–1200 m depth and 30 m above the seafloor (1000–2200 m). The results obtained support the growing body of evidence that the relationship between particulate bio-Ba and Corg throughout the water column in margin systems is clearly different from this relation in the open ocean. In the Alboran Sea, the annual averaged bio-Ba fluxes range from 0.39 to 1.07 μmol m−2 day−1, with mean concentrations of 1.31–1.69 μmol g−1 and bio-Ba/Corg ratios lower than in the open ocean. The low bio-Ba values obtained also indicate that calculating bio-Ba is extremely sensitive to the detrital Ba/Al ratio of each sample. The lithogenic Ba fraction in the Alboran Sea continental margin area contributes between 24% and 85% of the total Ba. Increased bio-Ba export efficiency was observed after periods of high primary productivity and suggests that the processes limiting the bio-Ba formation in the study area relate to settling dynamics of organic matter aggregates. Furthermore, the ballasting effect of the abundant lithogenic and carbonate particles may limit decomposition of organic matter aggregates and enhance the transfer of particles rich in Corg and relatively poor in bio-Ba to the deep seafloor. Lateral input of freshly sedimented biogenic material, including particulate bio-Ba, has been observed on the lower continental slope in the western Alboran Sea. These observations emphasize that the use of the bio-Ba as a proxy of export productivity from the surface ocean must be used cautiously in highly dynamic environments such as those in the Alboran Sea.  相似文献   

12.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

13.
The UNEP (1977) study concerning the terrestrial discharges of phosphorus and nitrogen into the Mediterranean Sea is used in this work, along with the calculated values of the water fluxes (Bethoux, 1979, 1980). Owing to the phosphorus concentrations in the deep waters and the terrestrial discharges, the balance of this element requires low concentrations in the surface layers (< 0.1 μg P l?1) which appear to be in agreement with the measured phosphate concentrations in the Strait of Gibraltar and in the Strait of Sicily. The phosphorus cycle in the Mediterranean Sea is characterised by the transfer of the terrestrial and Atlantic influxes from the surface layer to the intermediate and deep layers.The geographic distribution of the terrestrial discharges is highly asymmetric, and the vertical movements of the water masses in certain regions induce an important hydrologic recycling of phosphorus. The potential fertility (linked to the assimilation of the available phosphorus) is estimated from the local surface phosphorus flows and from the hydrologic recycling. Its values range, in the Western basin, between 9 and 86 g C m?2y?1 in the Southern and Northern parts of this basin, respectively. In addition to biological reasons, the nitrogen budget in the Mediterranean Sea should be comparable to that of phosphorus because the geographical variations of the nitrate concentrations in the deep waters and the distribution of terrestrial discharges are similar to those of phosphorus. However, the relatively low values of terrestrial discharges of nitrogen proposed by UNEP (compensating about 28% of the outflowing nitrate fluxes in the Strait of Gibraltar) do not allow a balance of this nutrient unless we introduce a high concentration (too high in the author's opinion) in the Atlantic surface waters.  相似文献   

14.
As part of a larger project on the deep benthos of the Gulf of Mexico, an extensive data set on benthic bacterial abundance (n>750), supplemented with cell-size and rate measurements, was acquired from 51 sites across a depth range of 212–3732 m on the northern continental slope and deep basin during the years 2000, 2001, and 2002. Bacterial abundance, determined by epifluorescence microscopy, was examined region-wide as a function of spatial and temporal variables, while subsets of the data were examined for sediment-based chemical or mineralogical correlates according to the availability of collaborative data sets. In the latter case, depth of oxygen penetration helped to explain bacterial depth profiles into the sediment, but only porewater DOC correlated significantly (inversely) with bacterial abundance (p<0.05, n=24). Other (positive) correlations were detected with TOC, C/N ratios, and % sand when the analysis was restricted to data from the easternmost stations (p<0.05, n=9–12). Region-wide, neither surface bacterial abundance (3.30–16.8×108 bacteria cm−3 in 0–1 cm and 4–5 cm strata) nor depth-integrated abundance (4.84–17.5×1013 bacteria m−2, 0–15 cm) could be explained by water depth, station location, sampling year, or vertical POC flux. In contrast, depth-integrated bacterial biomass, derived from measured cell sizes of 0.027–0.072 μm3, declined significantly with station depth (p<0.001, n=56). Steeper declines in biomass were observed for the cross-slope transects (when unusual topographic sites and abyssal stations were excluded). The importance of resource changes with depth was supported by the positive relationship observed between bacterial biomass and vertical POC flux, derived from measures of overlying productivity, a relationship that remained significant when depth was held constant (partial correlation analysis, p<0.05, df=50). Whole-sediment incubation experiments under simulated in situ conditions, using 3H-thymidine or 14C-amino acids, yielded low production rates (5–75 μg C m−2 d−1) and higher respiration rates (76–242 μg C m−2 d−1), with kinetics suggestive of resource limitation at abyssal depths. Compared to similarly examined deep regions of the open ocean, the semi-enclosed Gulf of Mexico (like the Arabian Sea) harbors in its abyssal sediments a greater biomass of bacteria per unit of vertically delivered POC, likely reflecting the greater input of laterally advected, often unreactive, material from its margins.  相似文献   

15.
The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy (Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.  相似文献   

16.
Hydrocarbons in the Mediterranean Sea were analyzed from 1 m depth during the winter of 1974–1975. Petroleum hydrocarbons averaged from 6.9 to 25.8 μg/l, with the Alboran Sea and the area off Libya having the highest concentrations. The freshest petroleum material was found off Libya and in the Tyrrhenian Sea.Considerable amounts of biologically produced hydrocarbon material were also present (0.8–22.8 μg/l). They could only be identified semi-qualitatively but appeared to be quite similar, with the exception of the material from the Tyrrhenian Sea.  相似文献   

17.
The Fram Strait is very important with regard to heat and mass exchange in the Arctic Ocean, and the large quantities of heat carried north by the West Spitsbergen Current (WSC) influence the climate in the Arctic region as a whole. A large volume of water and ice is transported through Fram Strait, with net water transport of 1.7–3.2 Sv southward in the East Greenland Current and a volume ice flux in the range of 0.06–0.11 Sv. The mean annual ice flux is about 866,000 km2 yr−1. The Kongsfjorden–Krossfjorden fjord system on the coast of Spitsbergen, or at the eastern extreme of Fram Strait, is mainly affected by the northbound transport of water in the WSC. Mixing processes on the shelf result in Transformed Atlantic Water in the fjords, and the advection of Atlantic water also carries boreal fauna into the fjords. The phytoplankton production is about 80 g C m−2 yr−1 in Fram Strait, and has been estimated both below and above this for Kongsfjorden. The zooplankton fauna is diverse, but dominated in terms of biomass by calanoid copepods, particularly Calanus glacialis and C. finmarchicus. Other important copepods include C. hyperboreus, Metridia longa and the smaller, more numerous Pseudocalanus (P. minutus and P. acuspes), Microcalanus (M. pusillus and M. pygmaeus) and Oithona similis. The most important species of other taxa appear to be the amphipods Themisto libellula and T. abyssorum, the euphausiids Thysanoessa inermis and T. longicaudata and the chaetognaths Sagitta elegans and Eukrohnia hamata. A comparison between the open ocean of Fram Strait and the restricted fjord system of Kongsfjorden–Krossfjorden can be made within limitations. The same species tend to dominate, but the Fram Strait zooplankton fauna differs by the presence of meso- and bathypelagic copepods. The seasonal and inter-annual variation in zooplankton is described for Kongsfjorden based on the record during July 1996–2002. The ice macrofauna is much less diverse, consisting of a handful of amphipod species and the polar cod. The ice-associated biomass transport of ice-amphipods was calculated, based on the ice area transport, at about 3.55 × 106 ton wet weight per year or about 4.2 × 105 t C yr−1. This represents a large energy input to the Greenland Sea, but also a drain on the core population residing in the multi-year pack ice (MYI) in the Arctic Ocean. A continuous habitat loss of MYI due to climate warming will likely reduce dramatically the sympagic food source. The pelagic and sympagic food web structures were revealed by stable isotopes. The carbon sources of particulate organic matter (POM), being Ice-POM and Pelagic-POM, revealed different isotopic signals in the organisms of the food web, and also provided information about the sympagic–pelagic and pelagic–benthic couplings. The marine food web and energy pathways were further determined by fatty acid trophic markers, which to a large extent supported the stable isotope picture of the marine food web, although some discrepancies were noted, particularly with regard to predator–prey relationships of ctenophores and pteropods.  相似文献   

18.
This paper presents the first compilation of information on the spatial distribution of scleractinian cold-water corals in the Gulf of Cádiz based on literature research and own observations (video footage, sediment samples). Scleractinian cold-water corals are widely distributed along the Spanish and Moroccan margins in the Gulf of Cádiz, where they are mainly associated with mud volcanoes, diapiric ridges, steep fault escarpments, and coral mounds. Dendrophyllia cornigera, Dendrophyllia alternata, Eguchipsammia cornucopia, Madrepora oculata and Lophelia pertusa are the most abundant reef-forming species. Today, they are almost solely present as isolated patches of fossil coral and coral rubble. The absence of living scleractinian corals is likely related to a reduced food supply caused by low productivity and diminished tidal effects. In contrast, during the past 48 kyr scleractinian corals were abundant in the Gulf of Cádiz, although their occurrence demonstrates no relationship with main climatic or oceanographic changes. Nevertheless, there exists a conspicuous relationship when the main species are considered separately. Dendrophylliids are associated with periods of relatively stable and warm conditions. The occurrence of L. pertusa mainly clusters within the last glacial when bottom current strength in the Gulf of Cádiz was enhanced and long-term stable conditions existed in terms of temperature. Madrepora oculata shows a higher tolerance to abrupt environmental changes.  相似文献   

19.
Atlantic–Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's  = 0.027–0.311), indicating geographic isolation from either side of the Almería–Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( = − 0.019–0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( = 0.002–0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.  相似文献   

20.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号