首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

2.
The purpose of the present communication is to identify the short-term (few tens of months) periodicities of several solar indices (sunspot number, Caii area and K index, Lyman , 2800 MHz radio emission, coronal green-line index, solar magnetic field). The procedure used was: from the 3-month running means (3m) the 37-month running means (37m) were subtracted, and the factor (3m – 37m) was examined for several parameters. For solar indices, considerable fluctuations were seen during the ± 4 years around sunspot maxima of cycles 18–23, and virtually no fluctuations were seen in the ± 2 years around sunspot minima. The spacings between successive peaks were irregular but common for various solar indices. Assuming that there are stationary periodicities, a spectral analysis was carried out which indicated periodicities of months: 5.1–5.7, 6.2–7.0, 7.6–7.9, 8.9–9.6, 10.4–12.0, 12.8–13.4, 14.5–17.5, 22–25, 28 (QBO), 31–36 (QBO), 41–47 (QTO). The periodicities of 1.3 year (15.6 months) and 1.7 years (20.4 months) often mentioned in the literature were seen neither often nor prominently. Other periodicities occurred more often and more prominently. For the open magnetic flux estimated by Wang, Lean, and Sheeley (2000) and Wang and Sheeley (2002), it was noticed that the variations were radically different at different solar latitudes. The open flux for < 45 solar latitudes had variations very similar (parallel) to the sunspot cycle, while open flux for > 45 solar latitudes had variations anti-parallel to the sunspot cycle. The open fluxes, interplanetary magnetic field and cosmic rays, all showed periodicities similar to those of solar indices. Many peaks (but not all) matched, indicating that the open flux for < 45 solar latitudes was at least partially an adequate carrier of the solar characteristics to the interplanetary space and thence for galactic cosmic ray modulation.  相似文献   

3.
We present observational results from studying the quasi-periodicities in global solar radio flux during periods of enhanced noise storm activity, over durations of 4 hr a day (`intra-day' variations), observed at 77.5 MHz with the newly commissioned log-periodic array tracking system at the Gauribidanur Radio Observatory. Positional information on the storm centers was obtained with the radio imaging data from the Nan\c cay Radio Heliograph (NRH), while their active region counterparts on the photosphere (and the overlying chromosphere ) were located from the H images of the Big Bear Solar Observatory. The quasi-periodicity in flux was found to be 110 min, with the fluctuation in flux being 3(±1.5) solar flux units (s.f.u.). The results of such pulsations are interpreted qualitatively as evidence for coronal seismology.  相似文献   

4.
Kane  R.P. 《Solar physics》2002,207(1):17-40
The paper presents a more extensive comparison of Extreme Ultraviolet (EUV) irradiances during AE-E (1977–1980), Pioneer Venus (1979–1992) and SEM/SOHO (1996 onwards) with other solar indices than has been discussed previously. For long-term changes (solar cycle), all indices had similar trends and inter-correlations were high, so that any one could serve as a proxy for the other. For intermediate time-scales (monthly means), only L, F10 (2800 MHz) and Mgii had reasonably high correlations with EUV. The 2695 MHz radio emission also had a high correlation. For daily values, data for many indices are intermittant and these cannot serve as proxies. Again, only L, F10 (and 2695 MHz), Mgii stand out as possible proxies for EUV, particularly during intervals of strong 27-day sequences.  相似文献   

5.
Ma  Yuan  Xie  Ruixiang  Zheng  Xiangming  Huang  GuangLi 《Solar physics》2003,214(2):353-360
Fast pulsation events, corresponding optical activities and correlated events, observed with the acousto-optical spectrograph at the Yunnan Observatory during the 22nd solar cycle, are statistically analyzed in this paper. Some basic characteristics of the pulsation events in the 230–300 MHz range are obtained. In particular, unusual events with narrow bandwidths (10 MHz) and extremely short periods (25–55 ms) pulsation phenomena were observed. The production mechanisms for these rare pulsations are qualitatively discussed.  相似文献   

6.
Bewsher  D.  Parnell  C.E.  Pike  C.D.  Harrison  R.A. 《Solar physics》2003,215(2):217-237
The relative Doppler and non-thermal velocities of quiet-Sun and active-region blinkers identified in Ov with CDS are calculated. Relative velocities for the corresponding chromospheric plasma below are also determined using the Hei line. Ov blinkers and the chromosphere directly below, have a preference to be more red-shifted than the normal transition region and chromospheric plasma. The ranges of these enhanced velocities, however, are no larger than the typical spread of Doppler velocities in these regions. The anticipated ranges of Doppler velocities of blinkers are 10–15 km s–1 in the quiet Sun (10–20 km s–1 in active regions) for Hei and 25–30 km s–1 in the quiet Sun (20–40 km s–1 in active regions) for Ov. Blinkers and the chromosphere below also have preferentially larger non-thermal velocities than the typical background chromosphere and transition region. Again the increase in magnitude of these non-thermal velocities is no greater than the typical ranges of non-thermal velocities. The ranges of non-thermal velocities of blinkers in both the quiet Sun and active regions are estimated to be 15–25 km s–1 in Hei and 30–45 km s–1 in Ov. There are more blinkers with larger Doppler and non-thermal velocities than would be expected in the whole of the chromosphere and transition region. The recently suggested mechanisms for blinkers are revisited and discussed further in light of the new results.  相似文献   

7.
Imaging spectroscopy of the Sun was carried out at the California State University Northridge San Fernando Observatory using an InGaAs near-IR video camera. Using the Sii 1082.71 nm and Hei 1083.03 nm lines the Evershed effect is measured simultaneously in the photosphere and the chromosphere for three sunspots; the speed of the Evershed flow is measured to be between 3 to 8 times greater in the Hei line than in the Sii line, and the direction is radially inward in the chromosphere and outward in the photosphere. Telluric absorption lines prevented a meaningful measurement of Oi 1128.7 nm limb emission, but an upper limit of 20×10–3 B is measured for chromospheric limb emission at Oi 1316.3 nm. Zeeman splitting in Fei 1564.9 nm was observed in six sunspot umbrae, and a linear relationship between magnetic field and umbral continuum intensity is confirmed.  相似文献   

8.
The fractal dimensions of solar radio fluxes at 245, 410, 610, 1415, 2695, 2800, 4995, 8800, and 15400 MHz are calculated for the data period 1976–1990. The fractal dimension used here is an index to quantify the time variability of radio emission. The fractal dimensions were found to have values in the range of 1.2–2.0 for time scales of 10 days, 1–10 months, and 10 months. The lowest values were found around 3 GHz. The annual variations of fractal dimensions are small and are not in concert with the solar cycle for most of the fractal dimension at the analyzed frequencies except those for 4995 and 8800 MHz. The annual variations of the fractal dimensions are similar for the sunspot number and radio emission around 3 GHz; this implies a close relation between them. According to a simulation, larger fractal dimensions correspond to shorter e-folding time constants in the distribution of radio-source lifetimes.  相似文献   

9.
Penn  M.J. 《Solar physics》2000,197(2):313-335
From 15:33 through 16:02 UT on 13 June 1998, observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SOHO/CDS instruments as part of the SOHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region between 12–14 June 1998, and that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy data covered 512 × 512 arc sec of the disk center and were spectrally centered at the Hei 1083 nm line and captured ±1.0 nm of surrounding solar spectrum. The Hei absorption line is seen blue-shifted to velocities of between 200 and 300 km s–1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s–1 along a path inclined roughly 49 deg to the solar surface and rises to a height of just over 1.5 solar radii before it becomes too diffuse to follow. The filament also shows internal motions with multiple Doppler components shifted by ±25 km s–1. Finally, the KPVT data show no Stokes V profiles in the Doppler-shifted Hei 1083.03 nm absorption to a limit of roughly 3×10–3 times the continuum intensity. The SOHO/CDS scanned the center of the KPVT FOV using seven EUV lines; Doppler-shifted filament emission is seen in lines from Hei 58.4 nm, Heii 30.4 nm, Oiv 55.5 nm, Ov 63.0 nm, Nevi 56.3 nm, and Mgx 61.0 nm representing temperatures from about 2×104K through 1×106K. Bound-free continuum absorption from Hi, without confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density H I =4.8±2.5×1017 cm–2. Spatial maps show that this filament absorption is more confined than the regions which show emission.  相似文献   

10.
Wang  M.  Duan  C.C.  Xie  R.X.  Yan  Y.H. 《Solar physics》2003,212(2):401-406
A group of type III bursts observed with the 2.6–3.8 GHz spectrometer of National Astronomical Observatory of China on 15 April 1998 is analyzed. They have the characteristics of broad bandwidth (>100 MHz), very short durations (<100 ms), high polarization degree (100%), high frequency drift rates (>1 GHz s–1), and fast pulsations (with a period of about 100–200 ms). Their time profiles are also analysed. According to these characteristics, we suggest that these microwave type III bursts may be due to the fundamental plasma emission.  相似文献   

11.
Stepanov  A.V.  Tsap  Y.T. 《Solar physics》2002,211(1-2):135-154
Interaction of the 30–300 keV electrons with whistlers in solar coronal loops is studied using a quasi-linear approach. We show that the electron–whistler interaction may play a dominant role in the formation of fast electron spectra within the solar flare loops with the plasma temperature 107 K and plasma density 1011 cm–3. It is found that Landau damping of whistlers provides weak and intermediate pitch-angle diffusion regimes of fast electrons in coronal loops. The level of whistler turbulence in the weak diffusion regime under flare conditions is estimated as 10–7 of the energy density in the thermal particles. The `top – footpoint' relations between the hard X-ray flux densities and spectra are derived. The reason for a `broken' spectrum of the flare microwave emission is discussed.  相似文献   

12.
S. R. Kane 《Solar physics》1972,27(1):174-181
Observations of impulsive solar flare X-rays 10 keV made with the OGO-5 satellite are compared with ground based measurements of type III solar radio bursts in 10–580 MHz range. It is shown that the times of maxima of these two emissions, when detectable, agree within 18 s. This maximum time difference is comparable to that between the maxima of the impulsive X-ray and impulsive microwave bursts. In view of the various observational uncertainties, it is argued that the observations are consistent with the impulsive X-ray, impulsive microwave, and type III radio bursts being essentially simultaneous. The observations are also consistent with 10–100 keV electron streams being responsible for the type III emission. It is estimated that the total number of electrons 22 keV required to produce a type III burst is 1034. The observations indicate that the non-thermal electron groups responsible for the impulsive X-ray, impulsive microwave, and type III radio bursts are accelerated simultaneously in essentially the same region of the solar atmosphere.  相似文献   

13.
K.F. Tapping  C. Zwaan 《Solar physics》2001,199(2):317-344
Daily surveys of the solar disc made at 2.8 cm wavelength over the period 1–13 November 1981, complemented by magnetograms and H filtergrams, are used to examine the relationship between sources of the slowly varying component of solar radio emission and properties of their host regions. Two classes of source are noted: diffuse and compact. Sources are designated compact when smaller than 40. The diffuse sources may be explained in terms of free–free thermal emission from trapped plasma in loops overlying the active region. The great majority of compact sources can be accounted for in terms of gyroresonance from thermal electrons in the strong magnetic fields overlying sunspots. A small minority are less amenable to this explanation. They are associated with magnetic complexity and dynamism, lie close to magnetic polarity reversals, and could be non-thermal. Microwave sources are an evolutionary feature common to all but the smallest active regions.  相似文献   

14.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

15.
Temporal variability of the coronal index – the `Sun as a star' coronal green-line irradiance – is presented using wavelet transform over the epoch of almost 5 solar cycles. A significant index variability was found for all periods, particularly for the periods of 150 days and 1year as well as 28days. Connection of the variability with the phase of solar magnetic activity is outlined. The enhanced power of the 150-day period is dominant before and after the magnetic activity maxima in four out of the five cycles analyzed. To the contrary, no enhanced power was found just during the maxima of all cycles for this period. No clear periodic power behavior was found for the periods at about one year. Substantial rotation period variations of the coronal index up to 5days take place over relatively short time intervals. A comparison of the results of the Fourier transform and the time-period wavelet transform of the coronal index time series shows that only the application of the wavelet analysis enables one to find the relation between the coronal index variability and the course of the magnetic activity of the Sun.  相似文献   

16.
Zhang  Hongqi  Zhang  Mei 《Solar physics》2000,196(2):269-277
Simultaneous observations of chromospheric (H) and photospheric (Fei 5324.19 Å) magnetograms in quiet solar regions enable us to study the spatial configuration of the magnetic field in the solar atmosphere. With the typical spatial resolution of the Huairou magnetograph, the photospheric and chromospheric magnetic structures of the quiet Sun maintain a very similar pattern. Moreover, the vertical magnetic flux is almost the same from the photosphere to the chromosphere. As an intermediate step, we analyze the formation of the working lines used by the Huairou video magnetograph of the Beijing Astronomical Observatory. The Stokes V contribution function of H and Fei 5324.19 Å are calculated. It is found that our H magnetograms provide the distribution of the chromospheric magnetic field at a height some 1000–1500 km above the photosphere.  相似文献   

17.
Power-law spectra of 1–2 GHz narrowband dm-spikes   总被引:3,自引:0,他引:3  
Karlický  Marian  Jiřička  Karel  Sobotka  Michal 《Solar physics》2000,194(1):165-174
Twelve examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transforming of the frequency scales to heights in the solar atmosphere, the indices of the power-law power spectra are determined. The derived power-law indices are scattered in a broad range of values (–0.80––2.85). In some cases they considerably deviate from the previously found value of –5/3. A change of the power-law index above logk2.5 was also found in some cases. In the two longest events the time evolution of their power spectra as well as their indices were studied. While in most parts of the radio spectra the spectral index remains constant, in one part its absolute value increases with the spike intensity increase. Finally, the results, especially the broad range of power-law indices, are briefly discussed.  相似文献   

18.
Solar global radiation was measured in several places in Costa Rica during the total solar eclipse that occurred on July 11, 1991. In two of these places, Puntarenas and Santa Cruz, measurements in the ultraviolet range (295–385 nm) were also taken. In Santa Cruz, a normal incidence pyrheliometer with Schott filters OG530 and RG630 was used to measure direct solar radiation in its whole range, and in the 530–2800 nm and 630–2800 wavebands respectively. Global radiation, and consequently direct, diffuse and irradiance in any of the wavebands considered, decreased gradually as the sun was being eclipsed and reached zero during the totality, then increased to their normal values. Data registered in Santa Cruz were used to determine Ångstrom's atmospheric turbidity parameters and. Computations show that between 13:00 and 14:30 LT (local time), decreased and increased significantly. This indicates that atmospheric turbidity was high and large particles were more abundant than small ones. The size of hygroscopic particles increased during the eclipse when temperature decreased and relative humidity increased in a comparatively short time.  相似文献   

19.
Vršnak  B.  Ruždjak  V.  Brajša  R.  Zlobec  P.  Altaş  L.  Özgüç  A.  Aurass  H.  Schroll  A. 《Solar physics》2000,194(2):285-303
A sample of 47 importance 1 flares whose H emission occurred or protruded over umbrae of major sunspots (so called Z-flares) was studied to investigate characteristics of the associated dm–m radio, microwave and soft X-ray emission as the energy release site permeats into regions of strong magnetic fields. A close time association was found between the microwave burst peak and the `contact' of the H emission with the sunspot umbra. The H emission attained maximum close to or a few minutes after the contact. The soft X-ray bursts were delayed more, attaining maximum 0–10 min after the contact. The onset of bursts in the dm–m wavelength range was associated with the period of growth or the peak of the microwave burst. Two categories of type III and IV bursts could be recognized: the ones starting some ten minutes before the microwave peak, and those that begin close to the microwave burst peak. Type III bursts occur preferably when the microwave burst peaks simultaneously with or after the contact. The results are explained presuming that the contact reveals a permeation of the energy release process into a region of strong magnetic fields, where the process intensifies, and where the accelerated particles have access to magnetic field lines extending to large coronal heights. Different manifestations of the energy release process in various magnetic field topologies are considered to account for the various time sequences observed.  相似文献   

20.
The cooling effect of emission in the spectral lines, which dominates over continuous emission in the chromosphere and becomes important first around the temperature minimum, modifies greatly the radiative relaxation timet r in the solar atmosphere. This rises from low photospheric values to a maximum of 8 min just aboveT min, falls in the low chromosphere to 1.5 min because of line emission, but rises again to 6 min atT 7000–8400 K in the chromosphere where hydrogen ionization increases the specific heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号