首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Yanchang Formation is extensively developed in the Ordos Basin and its surrounding regions. As one of the best terrestrial Triassic sequences in China and the major oil-gas bearing formations in the Ordos Basin, its age determination and stratigraphic assignment are important in geological survey and oil-gas exploration. It had been attributed to the Late Triassic and regarded as the typical representative of the Upper Triassic in northern China for a long time, although some scholars had already proposed that the lower part of this formation should be of the Middle Triassic age in the mid-late 20th century. In this paper, we suggest that the lower and middle parts of the Yanchang Formation should be of the Ladinian and the bottom possibly belongs to the late Anisian of the Middle Triassic, mainly based on new fossils found in it and high resolution radiometric dating results. The main source rocks, namely the oil shales and mudstones of the Chang-7, are of the Ladinian Age. The upper part of the Yanchang Formation, namely the Chang-6 and the above parts, belongs to the Late Triassic. The uppermost of the Triassic is missed in most parts of the Ordos Basin. The Middle-Upper Triassic Series boundary lies in the Yanchang Formation, equivalent to the boundary between Chang-7 and Chang-6. The Ladinian is an important palaeoenvironmental turning point in the Ordos Basin. Palaeoenvironmental changes in the basin are coincidence with that of the Sichuan Basin and the main tectonic movement of the Qinling Mountains. It indicates that tectonic activities of the Qinling Mountains are related to the big palaeoenvironmental changes in both the Ordos and Sichuan Basins, which are caused by the same structural dynamic system during the Ladinian.  相似文献   

2.
山西吉县沃曲桃园下三叠统刘家沟组红层的古地磁研究   总被引:5,自引:1,他引:5  
本文对鄂尔多斯盆地东南缘一个背斜剖面的早三叠世红层样品进行了古地磁研究.对逐步热退磁矢量序列进行主成分分析以及各磁组分的解阻温度谱分析,估计了携磁矿物.分离出4种磁成分:镜铁矿携带的沉积或沉积后剩磁;赤铁矿携带的化学剩磁;等温剩磁和粘滞剩磁.特征剩磁(最高解阻温度Tu≥670℃)通过倒转检验、(递增)褶皱检验,平均方向为偏角D=-25°,倾角I=41°,相应的极位置为65°N、356°E.  相似文献   

3.
The Dongying Basin, Huimin Basin, and Zhanhua Basin constitute the Jiyang Depression in Shandong Province. They are major oil and gas exploring districts within the depression. Through reconstruc-tions of the paleotemperature of the three basins facilitated with the chlorite geothermometry, the thermal history of the Paleogene prototype basin in Jiyang Depression and its geologic significance were explored. This study reveals that the Si4 component in chlorites reduces gradually as its buried depth increases, while the AlIV component increases accordingly. The chlorite type changes from sili-con-rich diabantite to silicon-poor ferroamesite and prochlorite. The prochlorite in this district only appears in the deep buried depth, high temperature, and relatively old stratigraphies; while the diaban-tite appears in the shallower buried, low temperature, and newly formed strata; the ferroamesite exists in the conditions between prochlorite and diabantite formation. The diagenetic temperatures of the chlorites in these Paleogene basins are 171―238℃ for the Dongying Basin, 160―202℃ for the Huimin Basin, and 135―180℃ for the Zhanhua Basin. The differences of the chlorite diagenetic temperatures in the three basins were controlled by the duration time of the structural depressing processes. Higher temperature indicates longer depression time. The relationship between the chlorite diagenetic temperature and its buried depth indicates that the average paleogeothermal gradient is about 38.3℃ /km in the Paleogene prototype basin of Jiyang Depression. It was higher than the present geothermal gradient (29―30℃/km). This phenomenon was attributed to the evolution of the structural dynamics in the depression basin.  相似文献   

4.
Sébastien  Potel 《Island Arc》2007,16(2):291-305
Abstract   Pre-Late Cretaceous terranes from the central part of New Caledonia have been metamorphosed under very low-grade conditions by two high-pressure/low-temperature events. The present study investigates the metamorphic patterns with phyllosilicate crystallinities, electron microprobe analyses and petrography. The first metamorphic event is of Late Jurassic age and is characterized by very low (anchizone) to low-grade (epizone) conditions with a decrease of the illite Kübler Index (KI) and the chlorite Árkai Index (ÁI) values from northeast to southwest. This trend is also confirmed by chlorite thermometry. In the south of the area, un-metamorphosed sediments (diagenetic KI values) are observed in the Senonian 'formation à charbons', post-dating the metamorphism in this region. The second metamorphism is an Eocene high-pressure event, which overprints the Late Jurassic metamorphism in the northern part of the studied area. In this zone, the pattern of KI and ÁI indicates another gradient with increasing metamorphic conditions from southwest to northeast. Temperatures calculated by chlorite thermometry also indicate an evolution from southwest to northeast with slight increase of temperature from 298 ± 8°C to 327 ± 16°C. In both metamorphic zones, the K-white mica b cell dimension calculated on micas analyzed at electron microprobe are in good agreement with high-pressure/low-temperature metamorphic conditions (b0 > 9.04 Å). A combination of chlorite thermometry and K-white mica b cell dimension allows estimation of a minimum pressure of 1.3 GPa in the Eocene zone (in excellent agreement with the 1.5 GPa registered in the northern part of New Caledonia) and a minimum of 1.1 GPa in the Late Jurassic metamorphic part.  相似文献   

5.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

6.
Paleomagnetic and rock magnetic study has been conducted on the Early Triassic red beds of Liujiagou Formation from Jiaocheng, Shanxi Province. Hematite was shown as the main magnetic mineral. After eradicating an initial viscous component at room temperature to ~100°C–200°C, thermal demagnetization shows that most samples contain two remanence components, intermediate-temperature remanence component at 250°C–500°C and high-temperature component at 500°C–680°C. The intermediate-temperature component has a negative fold test at the 95% confidence level. And the pole position of the intermediate-temperature component in geographic coordinates is correlated with the Middle Jurassic reference pole of the North China Block (NCB) within the 95% confidence, suggesting that it might be a remagnetization component acquired during the Yanshanian period. The high-temperature component contains both reversal and normal polarities with positive fold test and C-level positive reversal test at the 95% confidence level, which suggests that this high-temperature component can be regarded as primary magnetization. Comparison of this newly obtained Early Triassic paleopole with the coeval mean pole of the Ordos Basin suggests that a locally relative rotation may have happened between the Ordos and the Jiaocheng area of Shanxi Province. This rotation may be related with two faults: one is Lishi big fault separating Ordos from Shanxi and the other is Jiaocheng big fault, which is situated in the southeast of sampling locality and was still in motion during the Cenozoic.  相似文献   

7.
Abstract Illite crystallinity (IC) and illite b, lattice spacing were measured across the Cretaceous Shimanto Belt, Kii Peninsula, Southwest Japan. For the IC survey, 103 samples of argillaceous rocks were analyzed from the central area and the western area of the belt. Values of IC (Kubler Index) vary between 0.28 and 0.71 Δ°2θ and indicate diagenetic and anchizone metamorphism respectively. The IC distribution reveals two contrasting patterns of thermal maturity. The Hanazono Formation, exposed in the northern area of the belt, generally dips north, but IC values increase systematically from 0.28 Δ°2θ in the north to 0.54 Δ°2θ in the south and indicate an inverted thermal structure. Values in other formations vary widely in the southern area of the belt ranging between 0.45 and 0.71 Δ°2θ, but the values do not show any systematic change from north to south and on average remain almost constant. Illite bo, lattice spacing values for 56 samples vary between 9.006 and 9.041 Å corresponding to intermediate pressure conditions of the metamorphic facies. These values, combined with paleotemperatures estimated from IC, indicate paleogeothermal gradients of 22 and 31°C/km for the northern and southern areas of the belt, respectively. The inverted thermal structure of the Hanazono Formation, together with a lower paleogeothermal gradient, possibly is a result of the subduction of a relatively cold oceanic plate during the Late Cretaceous. The higher geothermal gradient could be a product of late thermal overprinting caused by the later subduction of a comparatively younger and hotter oceanic plate during the Eocene.  相似文献   

8.
Abstract Garnet clinopyroxenite containing porphyroclastic clinopyroxene with garnet lamellae from the Su-Lu ultrahigh-pressure (UHP) province, eastern China, records a three-stage evolutionary history. Stage A: precursor aluminous clinopyroxene associated with Mg-rich spinel was stable. Stage B: Mg-rich spinel and aluminous clinopyroxene recrystallized to form porphyroblasts of garnet and diopside with garnet lamellae, respectively. Thereafter, these porphyroblasts were granulated and recrystallized to form equigranular neoblasts in the matrix, being driven by subsolidus deformation. Stage C: the assemblage developed retrograde hornblende, epidote, spinel, chlorite, calcite, and dolomite. The estimated composition of the precursor aluminous clinopyroxene indicates that equilibrium conditions of the stage A were 900-1000°C, and 1.0-1.5 GPa. The neoblast garnet-clinopyroxene pairs, not conjectural, give 740 ± 50°C and higher than 2.5 GPa for the climax conditions of stage B. This implies that the Hujialin garnet clinopyroxenite was transported from a low dP/dT setting to a high dP/dT setting, probably related to subduction during stage B. The Hujialin garnet clinopyroxenite as well as adjacent UHP eclogite which records 700°C and 3.0 GPa as the maximum physical conditions, experienced amphibolite facies retrogression, suggesting that they shared a common P-T history during exhumation.  相似文献   

9.
C. W. Oh  & J. G. Liou 《Island Arc》1998,7(1-2):36-51
The petrogenetic grid between the eclogite and other high-pressure/temperature (P/T) metamorphic facies in a basaltic system is constructed by considering barroisite as one of the important phases in high-P/T metamorphism and by using previous petrological data combined with Schreinemakers' analysis and slope calculation. In the constructed petrogenetic grid, the eclogite facies is bounded by the blueschist and epidote–amphibolite facies with negative-slope reactions at lower temperatures (450–550 °C) and by the epidote–amphibolite, amphibolite and granulite facies with positive-slope reactions at higher temperatures (> 550–600 °C). The eclogite facies does not contact the greenschist facies, and the lowest P condition for the eclogite facies exists at the boundary between the eclogite and epidote–amphibolite facies. The temperature range of the epidote–amphibolite facies increases with increasing pressure until 8–11 kbar and then decreases up to 13–15 kbar. Compared to boundaries of other facies, boundaries of the eclogite facies may have wider P–T ranges. The boundary between the blueschist and eclogite facies occurs over a large temperature range from 450 to 620 ± 30 °C, and the transitions between the eclogite and amphibolite or high-pressure granulite facies occur over a pressure range in excess of 6–10 kbar.  相似文献   

10.
Masahiko  Yagi 《Island Arc》1993,2(4):240-261
Abstract Alteration of reservoir rocks in the Yurihara Oil and Gas Field, hereafter referred to as the ‘Yurihara field’, have been examined by using samples from six wells. These rocks are basalts in the lowermost part of the basin-fills (‘green tuff’ Formation). These basalts were produced in many eruptions in a submarine environment during the early to middle Miocene, and they underwent continuous intensive alteration genetically associated with Miocene submarine volcanism. The alteration of the basalts is of two types: low grade metamorphism and hydrothermal. The former belongs to the type of ocean floor metamorphism and comprises two subgroups: zeolite (zone I) and prehnite-pumpellyite (zones IIa: vein and amygdule occurrence, and IIb: replacing plagioclase). The latter is characterized by potassic metasomatism accompanied by adularia, quartz and calcite veins (zones IIIa: center and IIIb: margin of the metasomatism). This overprints the low grade metamorphic alteration. The central zone of hydrothermal alteration coincides with a major estimated fault, so that fluids probably assent along the fault. The basalts erupted during 16.5-15.5 Ma, determined by planktonic foraminifera assemblages of inter-bedded shales, then underwent successive low grade metamorphism. In time, the hydrothermal alteration that overprints low grade metamorphism occurred. Adularia veins of the altered rocks located in the hydrothermal alteration zones (zone IIIa and IIIb) have been dated as 9 Ma determined by the K-Ar method. This fact indicates that the activity of low grade metamorphism had already crossed the peak before hydrothermal alteration occurred at 9 Ma. The shape of isotherms of fluid inclusion homogenization temperatures (Th) and that of isolines of apparent salinity (Tm) almost coincide with each other, and these also coincide with the distribution of hydrothermal alteration (zones IIIa and IIIb). This indicates that the fluid inclusions formed at the same time as ascending fluids produced the potassic metasomatism. The maximum Th of the fluid inclusions is 222°C and Tm indicates trapped fluids of up to 3.3 wt% equivalent NaCl (i.e. almost the same as seawater). A Th versus Tm plot indicates mixing occurred between hydrothermal fluids and formation water that has low salinity. Corrensite and chlorite form veins, and the temperatures of their formation, estimated by the extent of aluminium substitution into the tetrahedral site of chlorite, ranges between 165 and 245°C in the centre of the hydrothermal alteration zone (zone IIIa). This is consistent with the result of Th analyses. The deposition temperature of chlorite associated with prehnite in veins ranges between 190 and 215°C in zones IIa and IIb.  相似文献   

11.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

12.
To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were measured using XRD and VIS-SWIR (400-2500 nm) reflectance spectroscopy. Based on the illite cyrstallinity, Kubler Index (KI), the Early Triassic LuoLou Group and the Middle Triassic lower Baifeng Formation were classified as the lower Epizone with KI△2θ° ranging from 0.22 to 0.25, the upper Baifeng Formation as upper anchizone with KI△2θ°ranging from 0.26 to 0.33, and the Hekou Formation as lower anchizone with KI△2θ° ranging from 0.38 to 0.40. According to a KI△2θ° value of 0.43, it is possible that there may exist a local diagenetic zone in the upper strata. The illite cyrstallinity Kubler index and the metamorphic grade increase from the bottom to the top of the stratigraphic sequence. The metamorphic grade boundaries nearly match the stratigraphic boundaries, indicating a burial metamorphism nature for the stratigraphic sequence. From the bottom to the top of the sequence, the spectral absorption band center of clay minerals from fresh rocks is around 2200 nm. The absorption band centers change towards shorter wavelengths: the Luolou Group being at 2220 nm, the Baifeng Formation at 2217-2213 nm, the lower member of the Hekou Formation at 2214-2206 nm, and the upper member of the Hekou Formation at 2205-2197 nm. The spectral absorption band center of illite shows the same change pattern. These results indicate that very low-grade metamorphic belts can be subdivided using spectral indices of clay minerals, which are measured by using field portable spectroradiometers. However, it may not work well with satellite and airborne sensors.  相似文献   

13.
J. Liu  J. G. Liou 《Island Arc》1995,4(4):334-346
Abstract Kyanite-anthophyllite schist preserves the first record of high pressure in the amphibolite-facies unit of the SW Dabie Mountains, whereas ultrahigh- and high-pressure (UHP and HP) metamorphism has been well documented by the occurrence of coesite, diamond and mafic eclogite in the SE Dabie Mountains. Textural evidence indicates that minerals of the kyanite-anthophyllite schist formed mainly in two stages: (i) garnet + kyanite + antho-phyllite + rutile formed at pressure in excess of 1.2 GPa at T < 650°C; (ii) cordierite±staurolite formed by reaction of anthophyllite + kyanite at P < 0.5 GPa, T∼530°C. Plagioclase and ilmenite replaced garnet and rutile respectively during decompression. In a still later stage, secondary biotite recrystallized, accompanied by sillimanite replacing kyanite, and spinel replacing staurolite. The P-T information suggests that the amphibolite unit in the SW Dabie Mountains is part of the Triassic collision belt between the Sino-Korean and Yangtze cratons. The P-T paths of the UHP eclogite in the eastern Dabie Mountains and the HP kyanite-anthophyllite schist in the SW Dabie Mountains show similar decompression and equivalent late stage Barrovian-style metamorphism. Emplacement of voluminous granitoid at middle crustal levels between 134–118 Ma contributed to the development of the Barrovian-type metamorphism in the Dabie Mountains.  相似文献   

14.
海原地区早白垩世古地磁结果及其构造意义   总被引:9,自引:0,他引:9       下载免费PDF全文
通过海原地区早白垩世13个采点的古地磁研究,揭示了一组高温特征剩磁分量.在5%置信度下通过倒转检验,采样剖面获得的下白垩统李洼峡组和和尚铺组的磁性地层结果,显示多个正、反极性带,与早白垩世早期的极性特征相似,说明这组高温分量很可能代表岩石形成时的原生剩磁,其特征剩磁方向为:偏角D=12.7°,倾角I=50.2°,α5=6.3°;相应的极位置为:经度φ=218.0°E,纬度λ=78.2°N,dp=5.7°,dm=8.4°,古纬度ρ=31.0°.通过对比华北地块鄂尔多斯盆地的早白垩世古地磁结果,表明采样地区自早白垩世以来相对于华北鄂尔多斯盆地未发生明显的构造旋转和纬度方向上的位移.这说明海原断裂东南段并未发生大规模的左旋走滑运动,印度-欧亚板块碰撞挤压作用对青藏高原东北部海原地区的影响已经很小.  相似文献   

15.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   

16.
The East Asian monsoon system is a thermodynamic atmospheric circulation induced by the different potential heating between the 揥estern Pacific Warm Pool?(WPWP) and the Asian continent. The circulation patterns dominate seasonal patterns of winds, preci…  相似文献   

17.
《国际泥沙研究》2023,38(5):754-768
The current study utilizes a range of diagenetic fingerprints to differentiate between sandstone facies deposited in the Nile Delta before and during the Messinian salinity crisis (MSC), which is normally a challenging task considering the complex bio- and lithostratigraphic subdivisions of Messinian rock units. Subaerial exposure of the pre-MSC (Qawasim deltaic sandstone), during drawdown of the Mediterranean Sea at the time of the MSC, triggered pervasive dissolution of unstable rock fragments, kaolinization of feldspar, and meteoric dolomitization of carbonate. This was followed by mesogenetic calcite cementation and kaolinite transformation into dickite in deeply buried Qawasim sandstone. Comparatively, the Abu Madi estuarine facies, deposited during transgression after drawdown related to the MSC, is characterized by eogenetic iron (Fe)-calcite, glauconite, and pyrite (averages of 14.5%, 6%, and 2%, respectively). This facies transition is marked by abundance of mature glauconite (with potassium oxide (K2O) at about 8%) whose content abates upward from the transgression surface. Moreover, the compositional variability of the Abu Madi sandstone gave rise to multiple diagenetic trajectories that resulted in chlorite formation presumably following smectite and kaolinite. Listed diagenetic variations in the studied Messinian sandstone resulted from a complex interplay between rocks’ compositional, depositional, and burial attributes, ultimately serving as a basis for high-resolution stratigraphic correlation in continental and marginal marine settings with poor biostratigraphic controls.  相似文献   

18.
The reservoir quality of Jurassic and Triassic fluvial and lacustrine-deltaic sandstones of the Yanchang Oil Field in the Ordos Basin is strongly influenced by the burial history and facies-related diagenetic events. The fluvial sandstones have a higher average porosity (14.8%) and a higher permeability (12.7 × 10−3 μm2) than those of the deltaic sandstones (9.8% and 5.8 ×10−3) μm2, respectively). The burial compaction, which resulted in 15% and 20% porosity loss for Jurassic and Triassic sandstones, respectively, is the main factor causing the loss of porosity both for the Jurassic and Triassic sandstones. Among the cements, carbonate is the main one that reduced the reservoir quality of the sandstones. The organic acidic fluid derived from organic matter in the source rocks, the inorganic fluid from rock-water reaction during the late diagenesis, and meteoric waters during the epidiagenesis resulted in the formation of dissolution porosity, which is the main reason for the enhancement of reservoir-quality.  相似文献   

19.
Sorption of dissolved Fe2+ on bentonite was studied using a batch technique. The distribution coefficient, Kd , was evaluated for a bentonite-iron system as a function of contact time, pH, sorbent and sorbate concentrations, and temperature. Sorption results were interpreted in terms of Freundlich's and Langmuir's equations. Thermodynamic parameters for the sorption system were determined at three temperatures: 298°, 308°, and 318°K. The values of ΔH°(-4.0 kjmol−1) and ΔG°(-2.46 Kjmol−1) at 298°K (25°C) suggest that sorption of iron on bentonite is an exothermic and a spontaneous process. The ΔG° value became less negative at higher temperatures and, therefore, less iron was sorbed at higher temperatures. The desorption studies with 0.01 M CaCl2 and deionized water at iron loading on bentonite showed that more than 90 wt% of the iron is irreversibly sorbed, probably due to the fixation of the iron by isomorphous replacement in the crystal lattice of the sorbent.  相似文献   

20.
Yong Il  Lee  Dong Hyun  Lim 《Island Arc》2008,17(1):152-171
Abstract The Gyeongsang Basin is a non‐marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF‐A consists of the lower Nakdong Formation with average Q73F12R15; PF‐B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF‐C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF‐D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF‐A and PF‐B, whereas calcite and chlorite are dominant diagenetic minerals in PF‐C and PF‐D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF‐C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF‐A and PF‐B. Late‐stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF‐A and lower PF‐B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF‐C and PF‐D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late‐stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号