首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five outer planets are numerically integrated over five million years in the Newtonian frame. The argument of Pluto's perihelion librates about 90 degrees with an amplitude of about 23 degrees. The period of the libration depends on the mass of Pluto: 4.0×106 years forM pluto=2.78×10–6 M sun and 3.8×106 years forM pluto=7.69×10–9 M sun, which is the newly determined mass. The motion of Neptune's perihelion is more sensitive to the mass of Pluto. ForM pluto=7.69×10–9 M sun, the perihelion of Neptune does circulate counter-clockwise and forM pluto=2.78×10–6 M sun, it does not circulate and the Neptune's eccentricity does not have a minimum. With the initial conditions which do not lie in the resonance region between Neptune and Pluto, a close approach between them takes place frequently and the orbit of Pluto becomes unstable and irregular.  相似文献   

2.
The motion of dust structures in the circumnuclear region of comet Hale–Bopp is studied. About 270 envelope images were obtained with the AZT-8 reflector (D = 0.7 m, F = 28 m) and the Filin-3 image intensifier. We carried out our observations at the observational station of the Astronomical Observatory of Shevchenko Kiev State University in the village of Lesniki (near Kiev). The recording from the image-intensifier screen was made on Foto-100 film during 23 nights from March 24 to May 10, 1997. The circumnuclear region was imaged both in white light (without filters) and with IHW CO+ (ef = 426 nm), C3 (ef = 496 nm), C2 (ef = 514 nm), and RC (red continuum, ef = 684 nm) narrow-band interference filters. Based on our measurements of the radial expansion of dust structures, we determined the velocities, 0.61–1.99 km s–1; accelerations, from –18.3 × 10–3 to 4.0 × 10–3 m s–2; and rotation period of the cometary nucleus, 111.41h ± 0.05h.  相似文献   

3.
Simultaneous observations of a solar limb flare in the X-ray and ultraviolet regions of the spectrum are presented. Temporal and spectral X-ray observations were obtained for the 25–300 keV range while temporal, spectral, and spatial X-ray observations were obtained for the 30–0.3 keV range. The ultraviolet observations were images with a 10 spatial resolution in the lines of O v (T e 2.5 × 105 K) and Fe xxi (T e 1.1 × 107 K). The hard X-ray and O v data indicate that the impulsive phase began in the photosphere or chromosphere and continued for several minutes as material was ejected into the corona. Impulsive excitation was observed up to 30 000 km above the solar surface at specific points in the flare loop. The Fe xxi observations indicate a preheating before the impulsive phase and showed the formation of hot post-flare loops. This later formation was confirmed by soft X-ray observations. These observations provide limitations for current flare models and will provide the data needed for initial conditions in modeling the concurrent coronal transient.  相似文献   

4.
On the basis of the published times of minima and our own observations, we analysed the period change of the Algol-type eclipsing binary CU Pegasi. Over almost seventy years of observations, the parabolic period change has been clearly seen as dP/dt = 1.38 × 10−6 d/year. The estimated mass transfer in the system is about 1 × 10−7 MM⊙/year.  相似文献   

5.
Spectrographic observations of the flash spectrum were made by the Kwasan Observatory at the total solar eclipse on 7 March, 1970. The integrated intensities of Fexiv 5303, Fex 6374, and the continuum were measured on the spectrograms as a function of height above the Sun's limb. It was found that a large amount of emission in the coronal lines originates in the interspicular regions of the chromosphere. Analysis of the data yielded that the interspicular regions consist of coronal material of T e = 1.6 × 106–1.2 × 106 and log N e = 8.5–9.5, and that a decrease in T e and an increase in N e occur with decreasing height.  相似文献   

6.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

7.
We analyze the spectropolarimetric observations of 12 candidates for quasars from the spectroscopic database of the SDSS Catalog. The magnetic fields of these objects are estimated in the context of a theory that includes the Faraday rotation of the polarization plane on the mean free path of a photon in the outflow from an accretion disk. As a result, we have determined the column density in the outflow, N H ∼ 6 × 1023 cm−2, and the radial, B ∼ 1 G, and toroidal, B ∼ 600 G, magnetic fields.  相似文献   

8.
The Very Large Array (VLA) has been used at 20 cm wavelength to study the evolution of a burst loop with 4 resolution on timescales as short as 10 s. The VLA observations show that the coronal loop began to heat up and change its structure about 15 min before the eruption of two impulsive bursts. The first of these bursts occurred near the top of the loop that underwent preburst heating, while the second burst probably occurred along the legs of an adjacent loop. These observations evoke flare models in which coronal loops twist, develop magnetic instabilities and then erupt. We also combine the VLA observations with GOES X-ray data to derive a peak electron temperature of T e = 2.5 × 107 K and an average electron density of N e 1 × 1010 cm–3 in the coronal loop during the preburst heating phase.  相似文献   

9.
Recent solar observations at Pic du Midi are reported that yield a value of J 2=(2.57 ± 2.36) x 10–6 for the quadrupole moment of the Sun. These observations were conducted from July 1993 to July 1994 after several improvements of the scanning heliometer. This instrument operates by fast photoelectric scans of opposite limbs of the Sun quasi-simultaneously, which provides the distance between both inflection points of the limb profiles. Any number of solar diameters in any position angle can be measured within a time interval short enough to minimize the scattering of the observational parameters. Errors due to atmospheric deterioration are discussed. From our results, compared to previous values obtained by other authors, it can be concluded than an upper limit for J 2 is probably 1.0 × 10-5.  相似文献   

10.
The results of observations of the Rosette emission nebula NGC 2237 with the radio telescope UTR-2 at frequencies 12.6, 14.7, 16.7, 20.0 and 25.0 MHz are given in the shape of contours of constant brightness temperature. The half-power beamwidth of the telescope to zenith at 25.0 MHz was 28×38. Density weighted mean values for the non-thermal radio emissivity between the Sun and the source (7.9×10–41 W m–3 Hz–1 ster–1 at 25.0 MHz) and the ratio of the intensity of emissivity generated before the area and the intensity of galactic radio emissivity appearing beyond the area equal to 1.3 have been obtained. The electron temperatureT e=3600 K, the optical depth (about ten at 25 MHz), the measure of emission (ME=3500 cm–6 pc), the electron densityN e=8 cm–3 and the nebular mass 16.6×10+3 M have been determined. A comparison with other observation results has been made.  相似文献   

11.
The outer convection zone of the low-temperature white dwarf Van Maanen 2 has been studied for two different atmospheric models given byWeidemann (1960). A slight modification of the standard mixing length theory and the abundances derived by Weidemann have been used.The thickness of the convection zone is about 8 km for the atmospheric model withT eff=5780 K,g=108 cm sec–2 and about 23 km forT eff=5040,g=3.16×107K. In both cases the temperature at the lower boundary of the convection zone is about 9.8×105K. It is shown that this temperature corresponds approximately to the transition temperatureT tr to the (almost) isothermal core of the white dwarf. This value is considerably lower than the values ofT tr discussed in the literature until now.The outer convection zone consists of an upper completely non-degenerate part and a lower part with moderate degeneracy. In this lower part the degree of degeneracy is practically independent of depth.  相似文献   

12.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

13.
Chultem  Ts.  Yakovkin  N. A. 《Solar physics》1974,34(1):133-150
The statistical equilibrium equations for the continuum and first 10 levels of a hydrogen atom show that the radiation of a bright prominence (the brightness of the H line has attained 56 mÅ of the disc centre spectrum) is completely due to scattering of the Sun radiation. The basic unknowns are separated with certainty: electron concentration (n e = 3.0 × 1010 cm–3), effective thickness (l = 4.2 × 108 cm) and electron temperature (T e = 5000 K).Radiation of a very bright prominence (A (H) = 213 mÅ; T e = 7300 K; n e = 5.0 × 1011 cm–3; l = 1.3 × 107 cm) is on account of electron impacts (40%) and the Sun radiation scattering (60%).The parameters are shown to depend greatly on the prominence optical thickness in the lines of the first subordinate series of a hydrogen atom. In the course of determination all the parameters and 100 interconnected integral equations of the radiation diffusion have been thickness-averaged; the population of levels has been calculated by observations using the self-absorption factors.  相似文献   

14.
Slitless spectrograms of the chromosphere obtained during the eclipse of 4–5 February 1962 have been analyzed to obtain the decrements of the level populations of hydrogen, the self-absorption in the Balmer lines, and parameters useful in construction of models of the low chromosphere.The decrement of the high energy levels of hydrogen inferred under the optically thin assumption does not vary significantly with height, and it appears to be unnecessary to seek large deviations from local thermodynamic equilibrium in the high levels. The observed Balmer-to-Paschen line intensity ratios have been used to infer self-absorption and opacities in the Balmer lines. The resulting population of the second energy level is about an order of magnitude smaller than that found by Athay and Thomas from the 1952 data.The chromospheric continuum was generally underexposed; the absence of observed continuum in the visible region of the spectrum made it impossible to derive a unique model from the 1962 data alone. However, the high Balmer line data and new theoretical solutions of the statistical equilibrium equations for hydrogen combined with corrected 1952 observations at 4700 A are compatible with a model having approximately the same temperature and neutral hydrogen structure as the 1952 model by Pottasch and Thomas but half the electron density: T e = 6200K, N 1 = 7.4 × 1013 cm-3, N e = 2.3 × 1011 cm-3 at 500 km and T e = 7200K, N 1 = 2.6 × 1012 cm-3, N e = 1.7 × 1011 cm-3 at 1000 km.Based in part on a Ph.D. thesis submitted to the Department of Astro-Geophysics, University of Colorado.Now at the Department of Astronomy, Indiana University.  相似文献   

15.
We report the observations of a coronal mass ejection (CME) using the Soft X-ray Telescope on board the Yohkoh Mission. The CME had the familiar three part structure (frontal loop, prominence core and a cavity). The erupting prominence was observed by the Nobeyama radioheliograph. We were able to determine the mass of the CME (2.6 × 1014 g) from X-ray observations which seems to be at the lower end of the range of CME masses reported before from white light observations. This is the first time the mass of a CME has been determined from X-ray observations. The height of onset of the CME was 0.3R. The CME moved much faster than the erupting prominence while its acceleration was smaller than that of the erupting prominence.J. Leonard Culhane  相似文献   

16.
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

17.
The isotropic cumulative burst rate of 7030 –6000 +10000 yr–1 at a fluence ofS=8.47×10–9 erg–1 cm–2 determined by Beurleet al. from their observation of two gamma-ray bursts is shown to be statistically improbable. The difficulty arises from their assumption that the power law cumulative distribution function index equals one. Their observations are rediscussed and an upper limit ofN(>8.47×10–9 erg cm–2)<5400 yr–1 is proposed.  相似文献   

18.
New photoelectric UBV observations were obtained for the eclipsing binary TT Her at the Ankara University Observatory (AUO) and three new times of minima were calculated from these observations. The (OC) diagram constructed for all available times of minima of TT Her exhibits a cyclic character superimposed on a quadratic variation. The quadratic character yields an orbital period decrease with a rate of dP /dt = –8.83 × 10–8 day yr–1 which can be attributed to the mass exchange/loss mechanism in the system. By assuming the presence of a gravitationally bound third body in the system, the analysis of the cyclic nature in the (OC) diagram revealed a third body with a mass of 0.21M orbiting around the eclipsing pair. The possibility of magnetic activity cycle effect as a cause for the observed cyclic variation in the (OC) diagram was also discussed. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
    
New results concerning prominence observations and in particular the prominence–corona transition region (PCTR) are presented. In order to cover a temperature range from 2 × 104 to 7 × 105 K, several emission lines in many different ionization states were observed with SUMER and CDS on board SOHO. EM and DEM were measured through the whole PCTR. We compared the prominence DEM with the DEM from other solar structures (active region, coronal hole and the chromosphere–corona transition region (CCTR)). We notice a displacement of the prominence DEM minimum towards lower temperatures with respect to the minimum of the other structures. Electron density and pressure diagnostics have been made from the observed C III lines. Local electron density and pressure for T ∼ 7 × 104 K are respectively log N e = 9.30−0.34 +0.30 and 0.0405−0.014 +0.012. Extrapolations over the entire PCTR temperature range are in good agreement with previous SOHO results (Madjarska et al., 1999). We also provide values of electron density and pressure in two different regions of the prominence (center and edge). The Doppler velocity in the PCTR shows a trend to increase with temperature (at least up to 30 km s -1 at T ∼ 7 × 104 K), an indication of important mass flows. A simple morphological model is proposed from density and motion diagnostics. If the prominence is taken as a magnetic flux tube, one can derive an opening of the field lines with increasing temperature. If the prominence is represented as a collection of threads, their number increases with temperature from 20 to 800. Derived filling factors can reach values as low as 10−3 for a layer thickness of the order of 5000 km. The variation of non-thermal velocities is determined for the first time, in the temperature range from 2 × 104 to 7 × 105 K. The quite clear similarity with the CCTR non-thermal velocities would indicate that heating mechanisms in the PCTR could be the same as in the CCTR (wave propagation, turbulence MHD).  相似文献   

20.
Results from optical photometric observations of the PMS star V 1735 Cyg are reported. The star is located in the IC 5146 dark cloud complex—a region of active star formation. On the basis of observed outburst and spectral properties, V 1735 Cyg was classified as a FUor object. We present data from BVRI CCD photometric observations of the star, collected from March 2003 to January 2009. Plates from the Rozhen Schmidt telescope archive were scanned for a brightness estimation of the star. A sequence of sixteen comparison stars in the field of V 1735 Cyg was calibrated in BVRI bands. The data from photographic observations made from 1986 to 1992 show a strong light variability (ΔV=1m2). In contrast, the recent photometric data obtained from 2003 to 2009 show only small amplitude variations (ΔI=0m3). The analysis of existing photometric data shows a very slow decrease in star brightness—1m8 (R) for a 44 year period. The possibilities for future photometric investigations of V 1735 Cyg using the photographical plate archives is discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号