首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The powder XRD analysis of ringwoodite(γ-Fe2SiO4),which was synthesized in a II-stage anvil high-pressure capsule,was made,Its unit-cell parameter was calculated:a=8.219A,After the refinements,for several cycles,of the oxygen parameter x and the occupancy rate of Si in octahedron site,i.e.,the iversion degree u,the final result is R=0.077,when x=0.379A and u=27.5%,with the structural formula (Fe1.725 Si0.275)VI(Si0.725Fe0.275)IV O4 and atomic distances(Fe,Si)VI-O=2.022 A and (Si,Fe)IV-O=1.836A,Meanwhile,the Moessbauer spectroscopic analysis of the sample was conducted and the results obtained are in good agreement with those of X-ray structural analysis ,This paper focuses on the phase transformation and the properties of bonds of α-Fe2SiO4→γ-Fe2SiO4.  相似文献   

2.
Sequential core sediments from northwestern Taihu Lake in China were analyzed for grain size, organic carbon and heavy metal content. The sediments are composed of organic-poor clayey-fine silts. The chemical speciations of Cu, Fe, Mn, Ni, Pb, and Zn were also analyzed using the BCR sequential extraction procedure. Cu, Fe, Ni, and Zn are mainly associated with the residue fraction; Mn is concentrated mainly in exchangeable/carbonate fraction and residue fraction; and Pb mainly in Fe/Mn oxide fraction and organic/sulfide fraction. The exchangeable/carbonate fractions of Cu, Fe, Ni, Zn and Pb are lower. The fractions of Ni, Pb and Zn bound to the Fe/Mn oxide have significant correlations with reducible Mn; the organic/sulfide fractions of Cu, Mn, Ni, Pb, and Zn have significant correlations with TOC. The extractable fractions of Cu, Mn, Ni, Pb, and Zn are high at the top 4 cm of the core sediments as compared to those in the deeper layers, showing the anthropogenic input of heavy metals is due to rapid industrial development. The heavy metal pollution history of the sediments has been recorded since the late 1970s, determined by the result of ^137Cs dating.  相似文献   

3.
The Mossbauer spectra of natural megacrystal clinopyroxene are usually fitted by 4 sets of symmetric doublets, A-A', B-B', C-C' and D-D', respectively, in terms of increasing Qs value in literature. But the assignments of those doublets are quite different, except the D-D' doublet assigned to Fe3+ at the lattice site Ml in previous papers. Particularly, the assignment and interpretation of the C-C' doublet are diverse.The oxidation experiments of natural megacrystal clinopyroxene collected from the Hannuoba basalt, North China, were performed under controlled conditions of temperature at 1000℃ and oxygen fugacity of FMQ buffer in 1, 2, 3 and 5 days respectively. The oxidized samples were then measured by X-ray diffraction spectrometry and Mossbauer spectrometry. The oxidation of clinopyroxene is characterized by Fe2+→ Fe3+ at Ml under the subsolidus conditions, which is consistent with the increase of the area of the D-D' doublet when the heating time increases. Accordingly, the area of the A-A' and B  相似文献   

4.
The Mossbauer spectra of natural megacrystal clinopyroxene are usually fitted by 4 sets of symmetric doublets, A-A', B-B', C-C' and D-D', respectively, in terms of increasing Qs value in literature. But the assignments of those doublets are quite different, except the D-D' doublet assigned to Fe3+ at the lattice site Ml in previous papers. Particularly, the assignment and interpretation of the C-C' doublet are diverse.The oxidation experiments of natural megacrystal clinopyroxene collected from the Hannuoba basalt, North China, were performed under controlled conditions of temperature at 1000℃ and oxygen fugacity of FMQ buffer in 1, 2, 3 and 5 days respectively. The oxidized samples were then measured by X-ray diffraction spectrometry and Mossbauer spectrometry. The oxidation of clinopyroxene is characterized by Fe2+→ Fe3+ at Ml under the subsolidus conditions, which is consistent with the increase of the area of the D-D' doublet when the heating time increases. Accordingly, the area of the A-A' and B  相似文献   

5.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   

6.
The absorption reactions of arsenite on Fe (hydro-)oxides are studied. The three absorbent types are Fe(OH)3 gel and two Fe (hydro-)oxides, in which the Fe(OH)3 gel was dried in a microwave oven under vacuum at 80℃. It is found that pH changes from 9.71 to 10.36 in 6 minutes after the Fe (OH)3 gel was mixed with NaAsO2 solution, as the arsenite replaces the OH- in goethite and Fe(OH)3. At the 40th minute after the start of the reaction, pH decreases, which is most probably because that the monodentate surface complex of absorbed arsenite has changed into mononuclear-bidentate complex and released proton. The decline in pH values indicates not the end of the absorption but a change in the reaction type. Temperature and dissolved gas has little effect on these two types of reactions. The total absorption of arsenite increases after the absorbent is irradiated with ultrasound, which also lead to difficulty in separating the solids from solution. The absorption capacity for arsenite of Fe(OH)3 gel dried in a microwave oven under vacuum is 53.18% and 17.22% respectively better than that of Fe (OH)3 gel and gel dried at 80℃. The possible reasons are that the water molecules in the gel vibrates with high frequency under the effect of microwave irradiation, thereby producing higher porosity and improved surface activity.  相似文献   

7.
Six sediment core samples collected from the innershelf of the east coast of India between Visakhapatnam and Kakinada were analyzed for major (Al & Fe) and trace metals (Cu, Co, Ni, Cd, Pb, Zn, Mn & Cr) to study the processes that regulate their concentrations in coastal sediments and to evaluate the metal contamination due to anthropogenic interference. High concentrations of Fe (5%-7%) are attributed mainly to the fine texture and its proximity to the source, maflc rocks. Positive correlation of Fe with Mn in all the cores indicates the influence of early diagenetic process. Positive correlations between Co, Ni, Zn and Cd among themselves and with Fe indicate their adsorption to ferromanganese oxides and involvement in geochemical processes. Further normalization of metals to Al indicates that the sediments are depleted in Mn & Zn and relatively enriched in Cd, Co, Ni, Pb & Cr, which also confirms that the origin of these sediments is of geological rather than biogenic importance. The Geo-accumulation (Igeo) values calculated for Ni, Pb, Co, Cd, Zn & Cr are more or less near to unity (Igeo≥1), indicating no industrial metal pollution. Pollution Load Index (PLI) values (1-2) calculated for the trace metals confirm the above findings.  相似文献   

8.
Clay minerals from different Cretaceous stratigraphic successions of Egypt were investigated using XRD,DTA,dissolution analysis(DCB),IR,Moessbauer and X-ray Electron Spin Resonance(ESR) spectroscopes.The purity of the samples and the degree of their structural order were determined by XRD.The location of Fe in the octahedral sheet is characterized by absorption bands at-875cm^-1 assigned as Al-OH-Fe which persist after chemical dissolution of free iron.The Moessbauer spectra of these clays show two doublets with isomer shift and quadrupole splitting typical of octahedrally coordinated Fe^3 ,in addition to third doublet with hyperfine parameter typical of Fe^2 in the spectra of Abu-Had kaolinite (H) sample.Six-lines magnetic hyperfine components which are consistent with those of hematite are confirmed in the spectra of both Isel and Rish kaolinite samples.Goethite was confirmed by both IR and DTA.Multiple nature of ESR of these clays suggested structural Fe in distorted octahedral symmetry as well as non-structural Fe.Little dispersion and low swelling indices as well as incomplete activation of the investigated montmorillonite samplas by NaCO3 appear to be due to incomplete disaggregation of montmorillonite particles.This can be explained by the ability of Fe-gel to aggregate the montmorillonite into pseudo-particles and retard the rigid-gel structure.However,extraction of this ferric amorphous compound by dithonite treatment recovers the surface properties of the montmorillonite samples.On the other hand,the amount and site occupation of Fe associated with kaolinite samples show an inverse correlation with the parameters used to describe the degree of crystallinity perfection,color,brightness and vitrification range of these kaolinite samples.  相似文献   

9.
Clay minerals from different Cretaceous stratigraphic successions of Egypt were investigated using XRD,DTA,dissolution analysis(DCB),IR,Moessbauer and X-band Electron Spin Resonance(ESR) spectroscopies.The purity of the samples and the degree of structural order were determined by XRD.The location of Fe in the octahedral sheet is characterized by absorption bands at-875cm^-1 assigned as Al-OH-Fe which is present after chemical dissolution of free iron.The Moessbauer spectra of these clays sow two doublets with isomer shift and quadrupole splitting typical of octahedral coordinated Fe^3 ,in addition to third doubler with hyperfine parameter typical of Fe^2 in the spectra of Abu-Had kaolinite (H)sample.6-lines magnetic hyperfine components which are consistent with those of hematite are confirmed in the spectra of both Isel and Rish kaolinite samples.Goethite was confirmed by both IR and DTA.Multiple nature of ESR of these clays suggested structural Fe in distorted octaedral symmetry and as non-structural Fe.Little dispersion and low swelling indices as well as incomplete activaiton of investigated montmorillonite samples by NaCO3 appear to be due to incomplete disaggregation of montmorillonite particles.This can be explained by the ability of Fe-gel to aggregate the montmorillonite into pseudo-particles and retard the rigid-gel structure.However,extraction of this ferric amorphous compound by dithonite treatment recovers the surface properties of the montmorillonite samples.On the other hand,amounts and site occupation of Fe associated with kaolinite samples show a negative correlation with the parameters used to describe the degree of crystalline perfection,color,brightness and vitrification range of these kaolinite samples.  相似文献   

10.
The Three Gorges are considered to be critical to understand the formation of Yangtze River. Recent research results suggest that the Yangtze Three Gorges was created during the Quaternary but the exact time is debatable. Fe–Ti oxide minerals are seldom used to study sediment provenance, expecially using scanning electron microscopy(SEM), and energy dispersive spectrometer(EDS). In this study, the provenance of Quaternary sediments in Yichang area, which is located to the east of the Yangtze Three Gorges, was investigated by using SEM and EDS to research Fe–Ti oxides. The Panzhihua vanadium titanomagnetite and Emeishan basalt outcrop are located to the west of the Three Gorges. Further, the materials from them are observed in the Quaternary sediments of Yichang area. Fe–Ti oxide minerals from the Huangling granite are observed in the Yunchi and Shanxiyao Formations, which were formed before 0.75 Ma B.P., whereas Fe–Ti oxide minerals from the Huangling granite, Panzhihua vanadium titanomagnetite, and Emeishan basalt are observed in the riverbed and fifth-terrace sediments of the Yangtze River, which were formed after 0.73 Ma B.P.. Thus, we can infer that the Three Gorges formed after the deposition of the Shanxi Formation and before the fifth-terrace; i.e., 0.75–0.73 Ma B.P..  相似文献   

11.
平顶海山富钴结壳分布上界的确定对准确估算结壳资源量至关重要.长期以来, 这一问题未能有效解决.通过浅地层剖面测量和海底摄像的首次联合应用, 发现浅地层剖面测量揭示的海山浅部地层结构与海山结壳的分布具有明显的相关性, 沉积物分布的上界往往与结壳分布下界对应.通过对浅剖测量结果的分析, 并对比海底摄像资料, 可以确定沉积物分布的下界, 进而推断结壳分布的上界, 据此判断西太平洋某海山结壳分布的上界水深为1560m左右.   相似文献   

12.
中、西太平洋海山区是富钴结壳的重要富集区,钙质远洋沉积、碳酸盐岩沉积及重力作用引起的滑塌沉积是海山山顶和斜坡的主要沉积类型,它们的空间分布规律对于富钴结壳的分布至关重要.在国内首次利用EM122多波束回波强度资料对中太平洋潜鱼海山进行了底质类型研究,对回波强度资料进行处理和统计分类,并与浅地层剖面和地质取样结果对比,分析得出了4种底质类型,即富钴结壳、钙质远洋沉积、碳酸盐岩基底及碎屑流沉积.这几种底质类型具有不同的回波强度特征,其中富钴结壳区表现为均一的回波强度高值特征;钙质远洋沉积区表现为均一的回波强度低值特征,二者回波强度值相差约20 dB.结果显示潜鱼海山山顶仅局部发育钙质远洋沉积,大部分为碳酸盐岩基底出露区,山顶边缘及侧翼山脊处为主要的富钴结壳分布区.此外,该海山存在3处较大规模的重力滑塌沉积区,主要为碎屑流沉积.   相似文献   

13.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

14.
The recent acquisition of high-quality seismic refraction data in the Jordan—Dead Sea rift and adjacent areas has made possible the investigation of the dynamic properties of seismic P-waves refracted and reflected at the crust—upper mantle boundary.

These waves cause high-amplitude arrivals near the outer cusp of the travel-time curve which are followed by an abrupt decrease in amplitudes at increasing distances beyond the cusp.

It has been shown that such amplitude distributions can only be the result of a smooth rapid increase of velocity with depth. In the case of the Jordan—Dead Sea rift the amplitude distribution indicates the presence of a transition zone between the lower crust and upper mantle in which the velocity increases smoothly. The interpretation of seismic refraction data in the Rhinegraben indicates the existence of a similar transition zone. In both rifts the crust—mantle boundary outside the rift is represented by sharp velocity discontinuity.

The comparison of the velocity structure of the crust—upper mantle boundary suggests that a smooth transition zone at the base of the lower crust is a characteristic property of continental rifts which could be interpreted in terms of crust—mantle interaction.  相似文献   


15.
A seismic experiment with six explosive sources and 391 seismic stations was conducted in August 2001 in the central Japan region. The crustal velocity structure for the central part of Japan and configuration of the subducting Philippine Sea plate were revealed. A large lateral variation of the thickness of the sedimentary layer was observed, and the P-wave velocity values below the sedimentary layer obtained were 5.3–5.8 km/s. P-wave velocity values for the lower part of upper crust and lower crust were estimated to be 6.0–6.4 and 6.6–6.8 km/s, respectively. The reflected wave from the upper boundary of the subducting Philippine Sea plate was observed on the record sections of several shots. The configuration of the subducting Philippine Sea slab was revealed for depths of 20–35 km. The dip angle of the Philippine Sea plate was estimated to be 26° for a depth range of about 20–26 km. Below this depth, the upper boundary of the subducting Philippine Sea plate is distorted over a depth range of 26–33 km. A large variation of the reflected-wave amplitude with depth along the subducting plate was observed. At a depth of about 20–26 km, the amplitude of the reflected wave is not large, and is explained by the reflected wave at the upper boundary of the subducting oceanic crust. However, the reflected wave from reflection points deeper than 26 km showed a large amplitude that cannot be explained by several reliable velocity models. Some unique seismic structures have to be considered to explain the observed data. Such unique structures will provide important information to know the mechanism of inter-plate earthquakes.  相似文献   

16.
The Ordovician Sierras Pampeanas, located in a continental back-arc position at the Proto-Andean margin of southwest Gondwana, experienced substantial mantle heat transfer during the Ordovician Famatina orogeny, converting Neoproterozoic and Early Cambrian metasediments to migmatites and granites. The high-grade metamorphic basement underwent intense extensional shearing during the Early and Middle Ordovician. Contemporaneously, up to 7000 m marine sediments were deposited in extensional back-arc basins covering the pre-Ordovician basement. Extensional Ordovician tectonics were more effective in mid- and lower crustal migmatites than in higher levels of the crust. At a depth of about 13 km the separating boundary between low-strain solid upper and high-strain lower migmatitic crust evolved to an intra-crustal detachment. The detachment zone varies in thickness but does not exceed about 500 m. The formation of anatectic melt at the metamorphic peak, and the resulting drop in shear strength, initiated extensional tectonics which continued along localized ductile shear zones until the migmatitic crust cooled to amphibolite facies P–T conditions. P–T–d–t data in combination with field evidence suggest significant (ca. 52%) crustal thinning below the detachment corresponding to a thinning factor of 2.1. Ductile thinning of the upper crust is estimated to be less than that of the lower crust and might range between 25% and 44%, constituting total crustal thinning factors of 1.7–2.0. While the migmatites experienced retrograde decompression during the Ordovician, rocks along and above the detachment show isobaric cooling. This suggests that the magnitude of upper crustal extension controls the amount of space created for sediments deposited at the surface. Upper crustal extension and thinning is compensated by newly deposited sediments, maintaining constant pressure at detachment level. Thinning of the migmatitic lower crust is compensated by elevation of the crust–mantle boundary. The degree of mechanical coupling between migmatitic lower and solid upper crust across the detachment zone is the main factor controlling upper crustal extension, basin formation, and sediment thickness in the back-arc basin. The initiation of crustal extension in the back-arc, however, crucially depends on the presence of anatectic melt in the middle and lower crust. Consumption of melt and cooling of the lower crust correlate with decreasing deposition rates in the sedimentary basins and decreasing rates of crustal extension.  相似文献   

17.
We study high-resolution three-dimensional P-wave velocity (Vp) tomography and anisotropic structure of the crust and uppermost mantle under the Helan–Liupan–Ordos western margin tectonic belt in North-Central China using 13,506 high-quality P-wave arrival times from 2666 local earthquakes recorded by 87 seismic stations during 1980–2008. Our results show that prominent low-velocity (low-V) anomalies exist widely in the lower crust beneath the study region and the low-V zones extend to the uppermost mantle in some local areas, suggesting that the lower crust contains higher-temperature materials and fluids. The major fault zones, especially the large boundary faults of major tectonic units, are located at the edge portion of the low-V anomalies or transition zones between the low-V and high-V anomalies in the upper crust, whereas low-V anomalies are revealed in the lower crust under most of the faults. Most of large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. Beneath the source zones of most of the large historical earthquakes, prominent low-V anomalies are visible in the lower crust. Significant P-wave azimuthal anisotropy is revealed in the study region, and the pattern of anisotropy in the upper crust is consistent with the surface geologic features. In the lower crust and uppermost mantle, the predominant fast velocity direction (FVD) is NNE–SSW under the Yinchuan Graben and NWW–SEE or NW–SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt, and the FVD is NE–SW under the eastern Qilian Orogenic Belt. The anisotropy in the lower crust may be caused by the lattice-preferred orientation of minerals, which may reflect the lower-crustal ductile flow with varied directions. The present results shed new light on the seismotectonics and geodynamic processes of the Qinghai–Tibetan Plateau and its northeastern margin.  相似文献   

18.
A study based on computation of D-function anomalies (method of joint gravity and magnetic data analysis) along profiles in the Bering Sea has been performed in both the Aleutian Basin with oceanic crust and the Bering continental shelf. This study revealed extended faults that affect not only the Earth’s crust but also the upper mantle. This is supported by seismic profiling. The calculated palinspastic reconstructions of the position of North America relative to “immobile” Eurasia 80, 52–50, 50–47, and 15–20 Ma ago allowed us to show that the revealed strike-slip faults are probable relics of an echeloned transform boundary between the Eurasian and North American lithospheric plates. The formation of this boundary beginning from the Late Cretaceous was apparently related to opening of the North Atalantic, which determined the large rate of displacement of North America relative to Eurasia.  相似文献   

19.
大陆浅源地震震源空间分布可以看作是一种地球物理特征,大量震源的空间位置数据可用来刻划大陆地壳结构。通过研究南北地震带南段震源的空间分布特征,发现研究区震源深度分布在横向上的疏密变化与地质构造特征相对应。剖面震源分布等密度图显示,中、下地壳不同深度广泛分布着多震层。多震层的分布与地壳低速、低阻层具有相关性,多震层一般位于低速、低阻层的上方。中地壳层次的低速、低阻层很可能是壳内滑脱层,是韧性下地壳与脆性上地壳发生拆离解耦的构造层次;下地壳低速、低阻层是部分熔融、含流体的韧性流变层;壳内多震层的构造属性应是上地壳硬的脆性层,容易发生突然破裂,产生地震。低速、低阻层是大陆板块内部上地壳脆性层构造过程的主控因素,包括对大陆内部浅源地震的控制;因此,在低速、低阻层之上往往形成多震层,越是活动性强的低速、低阻层,其上多震层震源密度越高。南北地震带南段不同层圈和块体之间的差异运动控制了其地壳层次的构造活动,包括大量地震的发生,其中,下地壳流层与上地壳脆性层的差异运动在中地壳层次发生剪切拆离是最重要的因素。  相似文献   

20.
The basin-and-range area in eastern North China is known for frequent occurrence of earthquakes, their great magnitudes and heavy losses thereby incurred. Seismic studies in the past usually emphasized the intersections, inflexions and branches of the faults. However, the intensities of many great earthquakes in this area do not show linear distribution, and the epicenters are horizontally dispersed at certain depths instead of along the strike of faults. Based on the sub-mantle plume studies made by authors in the past decade, it is thought that there exists an uplifted sub-mantle plume under the fault depression area in North China. The uplifting and intrusion of mantle materials caused the upper crust to be faulted, while low-velocity and high-velocity layers are alternatively distributed in the middle crust under the influence of the mantle and the lower crust. The middle and lower crust materials were detached from the top of the sub-mantle plume to the surroundings while the sub-mantle plume materi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号