首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The concentrations and isotopic compositions of Sr, Nd, Pb, He and C have been determined for suites of xenoliths from Bullenmerri (Australia), Ichinomegata (Japan), Geronimo (Arizona), and East Africa. The wehrlites and pyroxenites from Bullenmerri have Sr, Nd and Pb isotopic compositions that are generally similar to those found for alkali basalts in the region. The spinel lherzolites, in contrast, have higher 87Sr/86Sr and 206Pb/204Pb and lower 143Nd/144Nd ratios. Whereas the isotopic compositions of He are generally within the range of mid-ocean-ridge basalts (MORB) and do not covary with those of other trace elements, there is an apparent correlation between the 13C/12C and 143Nd/144Nd ratios for each of the two petrologic groups. These relationships, if substantiated for other xenolith suites, greatly limit the possible mechanisms for generating lithophile and volatile isotopic variations in the continental lithosphere. The helium isotopic compositions for all of the xenoliths fall within the range for MORB. This includes those from Ichinomegata, suggesting that the lower 3He/4He ratios found for He sampled at the surface at subduction zones result from mixing mantle He with near-surface crustal He rather than with subducted radiogenic He. Measured C isotopic compositions (relative to Peedee belemnite) for the Ichinomegata xenoliths include values that are both lighter and heavier than those in MORB, and are compatible with contributions from subducted carbon. The Nd and Sr isotopic compositions of the Ichinomegata xenoliths exhibit a correlation over a substantially greater range of values than typically observed for other light-rare-earth-element (LREE)-depleted xenoliths, and include more radiogenic Sr and less radiogenic Nd compositions. The carbon isotopic compositions found for the East African and Geronimo xenoliths extend to values that are lighter than those typically found for MORB.  相似文献   

2.
Pb, Sr and Nd isotope variations are correlated in diverse lavas erupted at small seamounts near the East Pacific Rise. Tholeiites are isotopically indistinguishable from MORB (206Pb/204Pb=18.1–18.5; 87Sr/86Sr=0.7023–0.7028; 143Nd/144Nd=0.51326-0.51308); associated alkali basalts always show more radiogenic Pb and Sr signatures (206Pb/204Pb=18.8–19.2; 87Sr/86Sr=0.7029–0.7031) and less radiogenic Nd (143Nd/144Nd=0.51289–0.51301). The isotopic variability covers 80% of the variability for Pacific MORB, due to the presence of small-scale heterogeneity in the underlying mantle. Isotope compositions also correlate with trace element ratios such as La/Sm. Tholeiites at these seamounts have 3He/4He between 7.8–8.7 R A(R A= atmospheric ratio), also indistinguishable from MORB. He trapped in vesicles of alkali basalts, released by crushing in vacuo, has low 3He/4He (1.2–2.6 R)Ain conjunction with low helium concentrations ([He]<5×10–8 ccSTP/g). In many cases post-eruptive radiogenic ingrowth has produced He isotope disequilibrium between vesicles and glass in the alkali basalts; subatmospheric 3He/4He ratios characterize the He dissolved in the glass which is released by melting the crushed powders. The narrow range of 3He/4He in the vesicles of the alkali basalts suggests that low 3He/4He is a source characteristic, but given their low [He] and high (U + Th), pre-eruptive radiogenic ingrowth cannot be excluded as a cause for low inherited 3He/4He ratios. Pb, Sr and Nd isotope compositions in lavas erupted at Shimada Seamount, an isolated volcano on 20 m.y. old seafloor at 17°N, are distinctly different from other seamounts in the East Pacific (206Pb/204Pb=18.8–19.0, 87Sr/ 86Sr0.7048 and 143Nd/144Nd0.51266). Relatively high 207Pb/204Pb (15.6–15.7) indicates ancient (>2 Ga) isolation of the source from the depleted upper mantle, similar to Dupal components which are more prevalent in the southern hemisphere mantle. 3He/4He at Shimada Seamount is between 3.9–4.8 R A. Because the helium concentrations range up to 1.5×10–6, the low 3He/4He can not be due to radiogenic accumulation of 4He in the magma for reasonable volcanic evolution times. The low 3He/4He may be due to the presence of enriched domains within the lithosphere with high (U + Th)/He ratios, possibly formed during its accretion near the ridge. Alternatively, the low 3He/4He may be an inherent characteristic of an enriched component in the mantle beneath the East Pacific. Collectively, the He-Pb-Sr-Nd isotope systematics at East Pacific seamounts suggest that the range of isotope compositions present in the mantle is more readily sampled by seamount and island volcanism than by axial volcanism. Beneath thicker lithosphere away from the ridge axis, smaller degrees of melting in the source regions are less efficient in averaging the chemical characteristics of small-scale heterogeneities.  相似文献   

3.
Geochemical and isotopic data for Cretaceous mafic rocks (basalt, gabbro, and diorite) from the Lower Yangtze region, northern Yangtze block, constrain the evolution of the lithospheric mantle. The mafic rocks, separated into the northeast and southwest groups, are alkaline and evolved, with low Mg# values (44–58) and variable SiO2 contents (47.6–57.4 wt%). Enriched LREEs, LILEs, and Pb, together with depleted Nb, Zr, and Ti, suggest that the mantle sources were metasomatized by slab-derived fluid/melt. All samples show high radiogenic 207Pb/204Pb(t) (15.41–15.65) and 208Pb/204Pb(t) (37.66–38.51) ratios at given 206Pb/204Pb(t) (17.65–19.00) ratios, consistent with the mantle sources having been metasomatized by ancient slab-derived material. Mafic rocks of the southwest group show enriched Sr–Nd isotopic characteristics, with 87Sr/86Sr(t) ranging from 0.7056 to 0.7071 and εNd(t) ranging from −5.3 to −8.3, indicating an origin from enriched lithospheric mantle. Mafic rocks of the northeast group, which record 87Sr/86Sr(t) ratios of between 0.7044 and 0.7050 and εNd(t) of −2.8 to −0.7, possibly formed by the mixing of melts from isotopically enriched lithospheric mantle and isotopically depleted asthenospheric mantle. Taking into consideration the geochemical and isotopic characteristics of Cretaceous mafic rocks, Cenozoic basalts, and basalt-hosted peridotite xenoliths from the Lower Yangtze region, we propose that an isotopically enriched, subduction-modified lithospheric mantle was replaced by or transformed into an isotopically depleted “oceanic-type” mantle. Such a process appears to have occurred in the eastern North China Craton as well as the eastern Yangtze block, probably in response to subduction of the paleo-Pacific plate beneath East Asia.  相似文献   

4.
The REE and Pb, Sr, Nd isotopes in three xenoliths from limburgite and scoria-breccias, including spinel-lherzolite, spinel-garnet-lherzolite and phlogopite-gamet-lherzolite, were analysed. The REE contents of the xenoliths are 1.3 to 3.3 times those of the chondrites with their REE patterns characterized by weak LREE depletion. The143Nd/144Nd values of whole rocks and minerals range from 0.51306 to 0.51345 with εNd=+ 8.2− +15.8,206Pb/204 Pb < 18.673, and207Pb/204Pb < 15.574. All this goes to show that the upper mantle in Mingxi at the depth of 67–82 km is a depleted mantle of MORB type, with87Sr/86 Sr ratios 0.70237–0.70390. In Nd-Sr diagram the data points of whole rocks are all out of the mantle array, implying that the xenoliths from Mingxi have more radiogenic Sr isotopes than those of the mantle array.  相似文献   

5.
Anhydrous and amphibole-bearing peridotite xenoliths occur in roughly equal quantitites in the Bartoy volcanic field about 100 km south of the southern tip of Lake Baikal in Siberia (Russia). Whole-rock samples and pure mineral separates from nine xenoliths have been analyzed for Sr and Nd isotopes in order to characterize the upper mantle beneath the southern Baikal rift zone. In an Sr-Nd isotope diagram both dry and hydrous xenoliths from Bartoy plot at the junction between the fields of MORB and ocean island basalts. This contrasts with data available on two other localities around Lake Baikal (Tariat and Vitim) where peridotites typically have Sr–Nd isotope compositions indicative of strong long-term depletion in incompatible elements. Our data indicate significant chemical and isotopic heterogeneity in the mantle beneath Bartoy that may be attributed to its position close to an ancient suture zone separating the Siberian Platform from the Mongol-Okhotsk mobile belt and occupied now by the Baikal rift. Two peridotites have clinopyroxenes depleted in light rare earth elements (LREE) with Sr and Nd model ages of about 2 Ga and seem to retain the trace element and isotopic signatures of old depleted lithospheric mantle, while all other xenoliths show different degrees of LREE-enrichment. Amphiboles and clinopyroxenes in the hydrous peridotites are in Sr–Nd isotopic disequilibrium. If this reflects in situ decay of 147Sm and 87Rb rather than heterogeneities produced by recent metasomatic formation of amphiboles then 300–400 Ma have passed since the minerals were last in equilibrium. This age range then indicates an old enrichment episode or repeated events during the Paleozoic in the lithospheric mantle initially depleted maybe 2 Ga ago. The Bartoy hydrous and enriched dry peridotites, therefore, are unlikely to represent fragments of a young asthenospheric bulge which, according to seismic reflection studies, reached the Moho at the axis of the Baikal rift zone a few Ma ago. By contrast, hydrous veins in peridotites may be associated with rift formation processes.  相似文献   

6.
Ridge segments and fracture zones from the American-Antarctic Ridge have been systematically dredge sampled from 4° W to 18° W. Petrographic studies of the dredged basalts show that the dominant basalt variety is olivine-plagioclase basalt, although olivine-plagioclase-clinopyroxene basalt is relatively common at some localities. Selected samples have been analysed for major and trace elements, rare earth elements and Sr and Nd isotopes. These data show that the majority of samples are slightly evolved (Mg#=69-35) N-type MORB, although a small group of samples from a number of localities have enriched geochemical characteristics (T- and P-type MORB).These different types of MORB are readily distinguished in terms of their incompatible trace element and isotopic characteristics: N-type MORB have high Zr/Nb (17–78), Y/Nb (4.6–23) and 143Nd/144Nd (0.51303–0.51308) ratios, low Zr/Y (2.2–4.2) and 87Sr/86Sr (0.70263–0.70295) ratios and have (La/Sm)N<1.0; T-type MORB have lower than chondritic Zr/Nb ratios (8.8–15.5), relatively low Y/Nb (1.9–4.3) and 143Nd/144Nd (0.51296–0.51288) ratios and relatively high Zr/Y (3.1–4.7), 87Sr/86Sr (0.70307–0.70334) and (La/Sm)N (1.1–1.5) ratios; the single sample of P-type MORB has low Zr/Nb (6.3), Y/Nb (0.9) and 143Nd/144Nd (0.51287) ratios and high Zr/Y (7.1), 87Sr/86Sr (0.70351) and (La/Sm)N (2.4) ratios. The geochemical characteristics of this sample are essentially identical to those of the Bouvet Island lavas.Geochemically enriched MORB are less abundant on the American-Antarctic Ridge than on the Southwest Indian Ridge but their geochemical characteristics are identical. The compositions of T- and P-type MORB are consistent with a regional mixing model involving normal depleted mantle and Bouvet plume type magma. On a local scale the composition of T-type MORB is consistent with derivation from depleted mantle which contains 4% veins of P-type melt.We propose a model for the evolution of the American-Antarctic Ridge lavas in which N-type MORB is derived from mantle with negligible to low vein/mantle ratios, T-type MORB is derived from domains with moderate and variable vein/mantle ratios and P-type MORB from regions with very high vein/mantle ratios where vein material comprises the major portion of the melt. The sparse occurrence of enriched lavas and by implication enriched mantle beneath the American-Antarctic Ridge, some distance (500–1,200 km) from the Bouvet plume location, is interpreted to be the result of lateral dispersion of enriched mantle domains by asthenospheric flow away from the Bouvet mantle plume towards the American-Antarctic Ridge.  相似文献   

7.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

9.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

10.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

11.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

12.
Helium, Sr, and Nd isotopic ratios and major and trace element compositions have been measured on a suite of lavas from the intra-plate volcanos of the Juan Fernandez Archipelago, Chile. Lavas from the islands of Mas Afuera and Mas a Tierra and from Monte Alpha and Friday seamounts have Sr and Nd isotopic ratios lying on the low143Nd/144Nd side of the mantle array (87Sr/86Sr:0.7034–0.7037;143Nd/144Nd:0.51281–0.51289). The homogeneity of these tracers suggests the involvement of a restricted range of mantle source compositions throughout Juan Fernandez volcanism. In marked contrast is the large range in3He/4He, from 7.8 to 18.0 RA. A bimodal3He/4He distribution on Mas a Tierra is associated with two distinct volcanic lineages;3He/4He ratios of 14.5–18.0 RA (n=15) occur in alkalic and tholeiitic shield basalts, whereas post-shield basanites range from 11.2 to 13.6 RA (n=12). Elemental and isotopic systematics demonstrate a transition from an enriched (Loihi-like) plume source in the shield lavas to a more MORB-like source in the post-shield volcanics. The transition between these sources is much more pronounced in3He/4He than in the other isotopic tracers. The predominantly tholeiitic basalts of Mas Afuera have exceptionally uniform isotopic and elemental characteristics; Sr and Nd ratios are similar to those of Mas a Tierra, but3He/4He ratios are lower and more uniform at 8.3±0.5 RA (n=17). The dramatic distinction between Mas Afuera and Mas a Tierra helium is surprising given the great similarity between the two islands in other geochemical characteristics. Both the Mas Afuera and Mas a Tierra results demonstrate that helium records systematic processes not readily apparent from other isotopic or elemental indicators. Neither magma chamber degassing nor local metasomatic events are likely to be responsible. We suggest that the observed variations may be attributed to mixing of plume and asthenospheric sources in which the plume component is characterized by a heterogeneous distribution of volatiles or has suffered extraction of small degree partial melts prior to mixing.  相似文献   

13.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   

14.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

15.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

16.
Post-3Ma volcanics from the N Luzon arc exhibit systematic variations in 87Sr/86Sr (0.70327–0.70610), 143Nd/144Nd (0.51302–0.51229) and 208Pb*/206Pb* (0.981–1.035) along the arc over a distance of about 500 km. Sediments from the South China Sea west of the Manila Trench also exhibit striking latitudinal variations in radiogenic isotope ratios, and much of the isotopic range in the volcanics is attributed to variations in the sediment added to the mantle wedge during subduction. However, Pb-Pb isotope plots reveal that prior to subduction, the mantle end-member had high 8/4, and to a lesser extent high 7/4, similar to that in MORB from the Indian Ocean and the Philippine Sea Plate. Th isotope data on selected Holocene lavas indicate a source with unusually high Th/U ratios (4.5–5.5). Combined trace element and isotope data require that three end-members were implicated in the genesis of the N Luzon lavas: (1) a mantle wedge end-member with a Dupal-type Pb isotope signature, (2) a high LIL/HFS subduction component interpreted to be a slab-derived hydrous fluid, and (3) an isotopically enriched end-member which reflects bulk addition (<5%) of subducted S China Sea terrigenous sediment. The 87Sr/86Sr ratios in the volcanics show a restricted range compared with that in the sediments, and this contrasts with 143Nd/144Nd and 208Pb*/206Pb*, both of which have similar ranges in the volcanics and sediments. Such differences imply that whereas the isotope ratios of Nd, Pb and Th are dominated by the component from subducted sediment, those of Sr reflect a larger relative contribution from the slab-derived fluid.  相似文献   

17.
Extensive Permo-Carboniferous volcanism has been documented from the Bohemian Massif. The late Carboniferous volcanic episode started at the Duckmantian–Bolsovian boundary and continued intermittently until Westphalian D to Stephanian B producing mainly felsic and more rarely mafic volcanics in the Central Bohemian and the Sudetic basins. During the early Permian volcanic episode, after the intra-Stephanian hiatus, additional large volumes of felsic and mafic volcanics were extruded in the Sudetic basins. The volcanics of both episodes range from entirely subalkaline (calc-alkaline to tholeiitic) of convergent plate margin-like type to transitional and alkaline of within-plate character. A possible common magma could not be identified among the Carboniferous and Permian primitive magmas, but a common geochemical signature (enrichment in Th, U, REE and depletion in Nb, Sr, P, Ti) in the volcanic series of both episodes was recognized. On the other hand, volcanics of both episodes differ in intensities of Nb, Sr and P depletion and also, in part, in their isotope signatures. High 87Sr/86Sr (0.707–0.710) and low εNd (−6.0 to −6.1) are characteristic of the Carboniferous mafic volcanics, whereas low 87Sr/86Sr (0.705–0.708) and higher εNd ranging from −2.7 to −3.4 are typical of the Permian volcanics. Felsic volcanics of both episodes vary substantially in 87Sr/86Sr (0.705–0.762) and εNd (−0.9 to −5.1). Different depths of magma source or heterogeneity of the Carboniferous and Permian mantle can be inferred from variation in some characteristic elements of the geochemical signature for volcanics in some basins. The Sr–Nd isotopic data with negative εNd values confirm a significant crustal component in the volcanic rocks that may have been inherited from the upper mantle source and/or from assimilation of older crust during magmatic underplating and ascending of primary basic magma. Two different types of primary magma development and formation of a bimodal volcanic series have been recognized: (i) creation of a unique magma by assimilation fractional crystallization processes within shallow-level reservoirs (type Intra-Sudetic Basin) and (ii) generation and mixing of independent mafic and felsic magmas, the latter by partial melting of upper crustal material in a high-level chamber (type Krkonoše Piedmont Basin). A similar origin for the Permo-Carboniferous volcanics of the Bohemian Massif is obvious, however, their geochemical peculiarities in individual basins indicate evolution in separate crustal magma chambers.  相似文献   

18.
The intraplate volcanic suite of the Chaîne des Puys (French Massif Central) shows a complete petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-type reservoir (206Pb/204Pb > 19.6; 87Sr/86Sr < 0.7037; εNd > + 4). The behavior of radiogenic isotopes suggests that the most likely crustal contaminants are meta-sediments located in the lower crust.The Li isotopic compositions of the lavas range from high δ7Li (> + 7‰) in basalts to lighter values in more evolved lavas (down to δ7Li ≈ 0‰). The mantle component, expressed in the least evolved lavas, has a heavy Li isotopic signature, in good agreement with previous δ7Li measurements of OIB lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series is in agreement with the AFC model suggested by the Sr–Nd–Pb isotopic systems. Although the behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations suggest that at least a portion of the lower crust beneath the Chaîne des Puys is characterized by a light Li isotopic composition (δ7Li < − 5‰).  相似文献   

19.
Exposure of the ca. 6 Ma Taitao ophiolite, Chile, located 50 km south of the Chile Triple Junction, allows detailed chemical and isotopic study of rocks that were recently extracted from the depleted mantle source of mid-ocean ridge basalts (DMM). Ultramafic and mafic rocks are examined for isotopic (Os, Sr, Nd, and O), and major and trace element compositions, including the highly siderophile elements (HSE). Taitao peridotites have compositions indicative of variable extents of partial melting and melt extraction. Low δ18O values for most whole rock samples suggest some open-system, high-temperature water–rock interaction, most likely during serpentinization, but relict olivine grains have δ18O values consistent with primary mantle values. Most of the peridotites analyzed for Nd–Sr isotopes have compositions consistent with estimates for the modern DMM, although several samples are characterized by 87Sr/86Sr and 143Nd/144Nd indicative of crustal contamination, most likely via interactions with seawater. The peridotites have initial 187Os/188Os ratios that range widely from 0.1168 to 0.1288 (γOs = −8.0 to +1.1), averaging 0.1239 (γOs = −2.4), which is comparable to the average for modern abyssal peridotites. A negative correlation between the Mg# of relict olivine grains and Os isotopic compositions of whole rock peridotites suggests that the Os isotopic compositions reflect primary mantle Re/Os fractionation produced by variable extents of partial melting at approximately 1.6 Ga. Recent re-melting at or near the spatially associated Chile Ridge further modified these rocks, and Re, and minor Pt and Pd were subsequently added back into some rocks by late-stage melt–rock or fluid–rock interactions.In contrast to the peridotites, approximately half of the mafic rocks examined have whole rock δ18O values within the range of mantle compositions, and their Nd and Sr isotopic compositions are all generally within the range of modern DMM. These rocks have initial 187Os/188Os ratios, calculated for 6 Ma, that range from 0.126 (γOs = −1) to as high as 0.561 (γOs = +342). The Os isotopic systematics of each of these rocks may reflect derivation from mixed lithologies that include the peridotites, but may also include pyroxenites with considerably more radiogenic Os than the peridotites. This observation supports the view that suprachondritic Os present in MORB derives from mixed mantle source lithologies, accounting for some of the worldwide dichotomy in 187Os/188Os between MORB and abyssal peridotites.The collective results of this study suggest that this >500 km3 block of the mantle underwent at least two stages of melting. The first stage occurred at 1.6 Ga, after which the block remained isolated and unmixed within the DMM. A final stage of melting recently occurred at or near the Chile Ridge, resulting in the production of at least some of the mafic rocks. Convective stirring of this mantle domain during a >1 Ga period was remarkably inefficient, at least with regard to Os isotopes.  相似文献   

20.
On the basis of their textures and mineral compositions spinel-peridotite xenoliths of the Cr-diopside group (group I) from Cenozoic volcanic fields of Arabia can be classified into different subtypes. Type IA is of lherzolitic to harzburgitic composition; mineral compositions are similar to those of group I mantle xenoliths from worldwide occurrences. Type IB xenoliths have lherzolitic to wehrlitic compositions; Mg/(Mg+Fe) ratios of the clinopyroxenes (0.862–0.916) and olivines (0.872–0.914) are similar too or slightly lower than those of typical IA minerals. Texturally, type IB xenoliths are distinguished from type IA rocks by the presence of intragranular spinel, intragranular relict Cr-pargasite, and subordinate intergranular Ba-phlogopite (11.1% BaO). The hydrous minerals in type IB xenoliths are interpreted to document an earlier metasomatism 1 which did not affect type IA lithospheric mantle. Subsequent recrystallization caused the partial replacement of Cr-pargasite in type IB materials and resulted in the formation of less hydrous mineral assemblages. Some of the type IA xenoliths are characterized by secondary intergranular amphibole which must have formed recently. The absence or presence of this intergranular amphibole is used to distinguish an anhydrous subtype IA1 from a hydrous subtype IA2. Type IB xenoliths may also contain secondary intergranular amphibole (similar to the one in subtype IA2) or they contain abundant formermelt patches now consisting of glass and phenocrysts of olivine, clinopyroxene, amphibole, and spinel. The secondary intergranular amphiboles and the former melt patches, both are interpreted as results of a second metasomatism (metasomatism 2). In their trace element and isotopic characteristics, type IA1 and type IA2 clinopyroxenes do not exhibit any systematic differences. Furthermore, type IA2 clinopyroxenes are in Sr isotopic disequilibrium with intergranular amphiboles. This suggests that type IA2 clinopyroxenes were not modified during the second metasomatism 2. All type IA clinopyroxenes have low Sr contents (100 ppm); most of them show Sm/Nd ratios higher than inferred for bulk earth. In their 87Sr/86Sr and 143Nd/144Nd ratios, type IA clinopyroxenes exhibit a large spread from 0.70226–0.70376 and from 0.51375–0.51251, respectively. Highly variable Sr/Nd ratios (5.0–79.3) and variable TUR and TCHUR model age relationships require different evolutions of the respective mantle portions. Nevertheless, all but two type IA clinopyroxenes form a linear array in a Sm–Nd isochron diagram which probably can not be explained by mixing. If taken as an isochron the slope of the array corresponds to an age of around 700 Ma. The mean initial Nd of 5.8±1.7 (1) is similar to values for juvenile Pan-African (i.e. 850–650 Ma old) crust of the Arabian-Nubian shield. It is suggested that type IA lithospheric mantle and the juvenile Pan-African crust are two counterparts fractionated from a common source during the earlier stages of the Pan-African. Type IB clinopyroxenes have high Sr contents (200 ppm), variable Sr/Nd ratios (9–111) and Sm/Nd ratios generally below that inferred for bulk earth, and show a small spread in their Sr and Nd isotopic compositions (0.70299–0.70318 and 0.51285–0.51278, respectively). In a Sm–Nd isochron diagram the data points form a linear, horizontal array indicating a close-to-zero age for the earlier metasomatism 1 and suggesting a close genetic relationship to mantle processes related to the formation of the Red Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号