首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Covering a vast area of the northern Siberian platform are the Siberian flood basalts (SFB), which make up one of the world’s largest magmatic provinces. Along the northeastern margin of the SFB province lies the Maymecha-Kotuy alkaline-ultramafic complex, consisting of a large volume of alkaline lavas, numerous dykes, and the Guli massif together with numerous other, smaller alkaline plutons. The genetic link between the SFB and the Maymecha-Kotuy complex continues to be a subject of active debate. Although the rocks in both units have essentially the same age close to the Permian-Triassic boundary, questions remain as to the relative order of emplacement and the contributing source materials of each lithology. This study builds upon earlier petrologic, geochemical, and isotopic work to further an understanding of the relationship between SFB and alkaline rocks. A whole-rock U-Pb age of 250 ± 9 Ma was determined for the Guli massif, which lies within the range of ages previously reported for the SFB. The Pb isotopic composition of the Guli rocks plot mainly in the lower portion of the OIB field, and dunite and carbonatite extend downward into the MORB field suggesting for them a more depleted source than the one that produced the SFB. The combined Pb, Sr, and Nd isotopic systematics of the SFB and the Guli alkaline rocks enable the identification of several discrete source components. The first component dominates many of the Guli rocks and is characterized by low 87Sr/86Sr (0.7031 to 0.7038), high εNd (+5.35 to +3.97), and relatively unradiogenic Pb (206Pb/204Pb = 17.88–18.31; 207Pb/204Pb = 15.38–15.46; 208Pb/204Pb = 37.33–37.70), which we associate with the depleted (MORB source) mantle. The second component representing most of the SFB demonstrates a notable chemical and isotopic uniformity with 87Sr/86Sr values of 0.7046 to 0.7052, εNd values of 0 to +2.5, and an average Pb isotopic composition of 206Pb/204Pb = 18.3, 207Pb/204Pb = 15.5, and 208Pb/204Pb = 38.0. This component, making up the majority of SFB, is speculated to be a relatively primitive lower mantle plume with a near-chondritic signature. Contamination by upper and lower continental crustal material, designated as components 3 and 4, is postulated to explain the isotopic characteristics of some of the higher SiO2 Guli rocks and SFB. Finally, metasomatic processes associated with the invasion of the Siberian super-plume add a fifth component responsible for the extreme enrichment in rare-earth and related elements found in some Guli rocks and SFB.  相似文献   

2.
The study of radioactive element distribution in the rocks of the Guli Complex revealed an increase of uranium and thorium contents in the final products of magmatic differentiation. In the carbonatite complex, the radioactive elements are mainly accumulated in the early rocks—phoscorites, while their contents in the late phases, dolomitic carbonatites, decrease. The Th/U ratio increases from near-chondritic values in the weakly differentiated highly-magnesian primary magmas to the late rocks—phoscorites, calcitic carbonatites, and dolomitic carbonatites. The majority of radioactive elements are hosted in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are characterized by extremely low contents of radioactive elements.  相似文献   

3.
Minerals of olivine–melilite and olivine–monticellite rocks from the Krestovskiy massif contain primary silicate-salt, carbonate-salt, and salt melt inclusions. Silicate-salt inclusions are present in perovskite I and melilite. Thermometric experiments conducted on these inclusions at 1,230–1,250°C showed silicate–carbonate liquid immiscibility. Globules of composite carbonate-salt melt rich in alkalies, P, S, and Cl separated in silicate melt. Carbonate salt globules in some inclusions from perovskite II at 1,190–1,200°C separated into immiscible liquid phases of simpler composition. Carbonate-salt and salt inclusions occur in monticellite, melilite, and garnet and homogenize at close temperatures (980–780°C). They contain alkalies, Ca, P, SO3, Cl, and CO2. According to the ratio of these components and predominance of one of them, melt inclusions are divided into 6 types: I—hyperalkaline (CaO/(Na2O+K2O)≤1) carbonate melts; II—moderately alkaline (CaO/(Na2O+K2O)>1) carbonate melts; III—sulfate-alkaline melts; IV—phosphate-alkaline melts; V—alkali-chloridic melts, and VI—calc-carbonate melts. Joint occurrence of all the above types and their syngenetic character were established. Some inclusions demonstrated carbonate-salt immiscibility phenomena at 840–800°C. A conclusion in made that the origin of carbonate melts during the formation of intrusion rocks is related to silicate–carbonate immiscibility in parental alkali-ultrabasic magma. The separated carbonate melt had a complex alkaline composition. Under unstable conditions the melt began to decompose into simpler immiscible fractions. Different types of carbonate-salt and salt inclusions seem to reflect the composition of these spatially isolated immiscible fractions. Liquid carbonate-salt immiscibility took place in a wide temperature range from 1,200–1,190°C to 800°C. The occurrence of this kind of processes under macroconditions might, most likely, cause the appearance of different types of immiscible carbonate-salt melts and lead to the formation of different types of carbonatites: alkali-phosphatic, alkali-sulfatic, alkali-chloridic, and, most widespread, calcitic ones.  相似文献   

4.
In this study we present a fresh isotopic data, as well as U–Pb ages from different REE-minerals in carbonatites and phoscorites of Guli massif using in situ LA-ICPMS technique. The analyses were conducted on apatites and perovskites from calcio-carbonatite and phoscorite units, as well as on pyrochlores and baddeleyites from the carbonatites. The 87Sr/86Sr ratios obtained from apatites and perovskites from the phoscorites are 0.70308–0.70314 and 0.70306–0.70313, respectively; and 0.70310–0.70325 and 0.70314–0.70327, for the pyrochlores and apatites from the carbonatites, respectively.Furthermore, the in situ laser ablation analyses of apatites and perovskites from the phoscorite yield εNd from 3.6 (±1) to 5.1 (±0.5) and from 3.8 (±0.5) to 4.9 (±0.5), respectively; εNd of apatites, perovskites and pyrochlores from carbonatite ranges from 3.2 (±0.7) to 4.9 (±0.9), 3.9 (±0.6) to 4.5 (±0.8) and 3.2 (±0.4) to 4.4 (±0.8), respectively. Laser ablation analyses of baddeleyites yielded an eHf(t)d of +8.5 (± 0.18); prior to this study Hf isotopic characteristic of Guli massif was not known. Our new in situ εNd, 87Sr/86Sr and eHf data on minerals in the Guli carbonatites imply a depleted source with a long time integrated high Lu/Hf, Sm/Nd, Sr/Rb ratios.In situ U–Pb age determination was performed on perovskites from the carbonatites and phoscorites and also on pyrochlores and baddeleyites from carbonatites. The co-existing pyrochlores, perovskites and baddeleyites in carbonatites yielded ages of 252.3 ± 1.9, 252.5 ± 1.5 and 250.8 ± 1.4 Ma, respectively. The perovskites from the phoscorites yielded an age of 253.8 ± 1.9 Ma. The obtained age for Guli carbonatites and phoscorites lies within the range of ages previously reported for the Siberian Flood Basalts and suggest essentially synchronous emplacement with the Permian-Triassic boundary.  相似文献   

5.
6.
Carbonate phases, some rich in Na2O and comparatively rich in SrO and BaO, occur as inclusions in perovskite and calzirtite (Ca2Zr5Ti2O16) in the carbonatite of the Guli complex, Siberia. This is the first record of alkali carbonates, akin to nyerereite [Na2Ca(CO3)2], in plutonic igneous rocks. The inclusion populations suggest that the parental magma of the complex was Ca-rich but developed Na-rich differentiates during the latest stages. This points to the dominant calcic carbonatites of the complex not being derivatives of alkali-rich parental carbonatites. These alkali-rich carbonate inclusions (and rare inclusions of djerfisherite) have been preserved due to the resistance of perovskite and calzirtite to processes of leaching, hydrothermal alteration and weathering.  相似文献   

7.
8.
9.
The abundances of U and Th in 19 achondrites and two pallasite olivines have been measured by radiochemical neutron activation analysis. Brecciated eucrites are enriched relative to chondrites in both elements by factors between 10 and 20, perhaps as a result of a magmatic differentiation process. Two unbrecciated eucrites are far less enriched, possibly due to their origin as igneous cumulates. The diogenites Johnstown and Shalka contain approximately chondritic levels of U and Th, but Ellemeet is 10 times lower. The abundances in three howardites are in good agreement with those expected from major element data for a mixing model with eucrite and diogenite end members. The high O18 basaltic achondrites Nakhla, Shergotty and Angra dos Reis have a range of U and Th abundances similar to the brecciated eucrites and howardites, but have systematically higher Th/U ratios. The Bishopville aubrite has U and Th abundances and Th/U ratios similar to those of several enstatite chondrites, suggesting a genetic relationship. The Norton County aubrite has a low Th/U, similar to that observed in recrystallized and metamorphosed terrestrial ultrabasic rocks, indicating a more complex history. Pallasite olivines have low U and Th contents (0.5.4 ppb and 1.4.3 ppb, respectively) similar to those in terrestrial dunites. The Goalpara ureilite has very low U (<0–6 ppb) and Th (2.7 ppb) abundance consistent with an origin from carbonaceous chondrites by partial melting.  相似文献   

10.
Uranium minerals from the San Marcos District, Chihuahua, Mexico   总被引:1,自引:0,他引:1  
The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.  相似文献   

11.
The Kupferschiefer in Poland has an increased U content. The facies high in organic matter are significantly enriched in U. The maximum values of U are mostly in the lower part of the Kupferschiefer sequence. The mean (x) U content in the Kupferschiefer from the Lubin-Sieroszowice district is 61.5 ppm and from the rest of the Polish Zechstein basin is about 26 ppm. Thorium occurs only in small quantities (x) = 1.5 and 5 ppm respectively). The high variance of U and Th in the Kupferschiefer is due to multistage diagenetic processes. The main U carrier is thucholite. The investigated thucholite showed a Th-content below 0.36 ppm. Thucholite with uraninite exolutions showed small (up to 1.0 wt.%) admixtures of U and thucholite without microscopically visible exsolutions (up to 37.85 wt.% U). The phosphates showed significant amounts of U (up to 0.24 wt.). The U content in the Kupferschiefer is significantly lower than in black shales from other part of the world. Uranium in the Lubin district is not economic.  相似文献   

12.
Uranium distributions have been determined in seventeen meteorites using fission track techniques. In seven cases, Th was also determined by a new method using fast neutrons. The actinides are generally concentrated in phosphates, usually whitlockite and/or chlorapatite. Wherever whitlockite and chlorapatite coexist, chlorapatite is richer in uranium. U concentrations in a given phosphate phase are highly variable from meteorite to meteorite and sometimes also show large variations in the same meteorite. A clinopyroxene phase enriched in U (0.2–0.3 ppm) is usually found in Ca-rich achondrites. The ThU ratios of phosphates differ considerably from whole rock values indicating that these elements were fractionated during the meteorite formation.  相似文献   

13.
Abundances of U and Th have been determined in 21 kimberlites from India by delayed fission neutron technique. Whole-rock U ranges from 1.87 to 3.93 ppm but Th shows wider variation from 14.02 to 60.44 ppm. Average Th/U ratios in three main diatremes are 7.9, 8.8 and 10.0. The interrelationships between U, Th and K are variable and complex. A positive correlation exists between P2O5 and U and Th. Model calculations suggest that enrichment of U involved considerable mantle reaction during ascent.  相似文献   

14.
Сharoitite consists of gem-quality mineral charoite and subordinate quartz, aegirine, K-feldspar, tinaksite, canasite, and some other minerals. This rock type is known only from one locality in the world associated with the Early Cretaceous (131.3 ± 2.4 Ma, K–Ar age) Malyy Murun syenite massif, Siberia, Russia. Although charoitite mineralogy is well known, there is disagreement whether it reflects metasomatic or magmatic activity. In order to understand when the charoitites formed we attempted to date it by 40Ar/39Ar incremental step-heating and laser ablation techniques. Our results show that the fibrous structure of water-bearing charoite does not retain radiogenic argon. Laser ablation 40Ar/39Ar for K-feldspar and tinaksite from the charoitite yielded several age clusters even from the same mineral grain. The oldest cluster of 134.1 ± 2.9 Ma for the K-feldspar agrees with the age of the Malyy Murun syenites. The youngest age of 113.3 ± 3.4 Ma for charoitite K-feldspar overlaps with the youngest of published K–Ar ages (112 ± 5 Ma) for one K-feldspar sample of the Malyy Murun syenite. Tinaksite is characterized by a similar spread of ages (from 133.0 ± 3 Ma to 115.7 ± 4.3 Ma) within a single grain. We suggest that charoitites originated due to the interaction of metasomatic agents derived from the Malyy Murun magma and country rocks. Timing of magma emplacement and charoitite crystallization is reflected by the older cluster of ages, whereas the younger ages are due to a secondary process.  相似文献   

15.
Oxides, sulfides, arsenides, native metals, and intermetallic compounds are accessory ore minerals from the rocks of the Mt. Poputnaya ultramafic massif. The Fe–Ni phases containing 55.3–82.3 wt % Ni are the most abundant among them. Magnetite, pyrrhotite, Co–Fe and Fe–Ni phases, and native iron are the comparatively high-temperature minerals, whereas heazlewoodite, orcelite, dienerite, and native copper are formed at low temperatures. The found minerals result from serpentinization at 500°C and below.  相似文献   

16.
17.
Malitch  K. N.  Kogarko  L. N. 《Doklady Earth Sciences》2011,440(2):1455-1459
This contribution firstly presents particularities of mineral chemistry of platinum-group elements (PGE) mineralization from placer deposits linked to the Bor-Uryakh massif of the Maimecha-Kotui Province, northern part of the Siberian Craton. The chemical composition of PGE mineralization has been studied by electron microprobe analysis. At Bor-Uryakh, main platinum-group minerals (PGM) comprise Os-Ir and Pt-Fe alloys represented by individual crystals, and polyphase PGM assemblages. The majority (e.g., 12 out of 19) of the Os-rich nuggets are iridian osmium, with subordinate amounts of native osmium (Os) and chengdeite (Ir3Fe). Pt-Fe alloys have a stoichiometric composition close to Pt2Fe. According to the nomen-clature by L. Cabri and C. Feather [1975] these minerals correspond to ferroan platinum. Based on geological position and geochemical features of investigated PGE mineralization the particular rock sources have been established. This study has demonstrated the similarity of chemical characteristics of Os-Ir and Pt-Fe alloys of the Bor-Uryakh massif to those of PGM from the Guli massif (Maimecha-Kotui Province), platiniferous zoned-type ultramafic massifs (e.g., Kondyor, Inagli and Chad) of the Aldan Province and Platinum belt of the Urals (Nizhny Tagil, Kytlym, etc.).  相似文献   

18.
Inclusions of mineral-forming environments in apatite-containing ijolites and magnetite–phlogopite–apatite ores in carbonatites were studied to elucidate the genesis of apatite mineralization in the Guli alkaline ultramafic carbonatite massif. Primary inclusions of carbonate–salt and carbonate melts have been discovered and studied. The carbonate–salt melt inclusions are of alkaline high-Ca composition and are enriched in P, Sr, SO3, and F (wt.%): CaO—30–40, Na2O—5–12, K2O—2–4, P2O5—1–3, SO3—1.5–3, and SrO—1–3. They also contain minor MgO, FeO, BaO, and SiO2 (tenths and hundredths of percent). The homogenization temperature of these inclusions is 850–970 °C. The carbonate inclusions contain predominant CaO (54–67 wt.%) and minor MgO, FeO, SrO, Na2O, and P2O5 (tenths of percent). Their homogenization temperature is 840–860 °C. Similar primary carbonate–salt and carbonate inclusions were found in garnet, and secondary ones were detected in silicate minerals (clinopyroxene and nepheline) of ijolites. Clinopyroxenes of ijolites also contain primary inclusions of alkaline ultramafic high-Ca melts similar in composition to melilitite-melanephelinites highly enriched in P, SO3, and CO2 (wt.%): SiO2—41–46, Al2O3—8–16, FeO—2–8, MgO—3–6, CaO—12–20, Na2O—2–9, K2O—1–6, P2O5—0.4–2.1, SO3—0.2–2.3, and Cl—0.02–0.35. According to the obtained data, apatite of the magnetite–phlogopite–apatite ores and ijolites of the Guli pluton crystallized from phosphorus-rich alkaline carbonate–salt melts at 850–970 °C. The generation of these melts was, most likely, due to the silicate–salt immiscibility in melilitite-melanephelinite melts highly enriched in salts, which occurred either at the final stages of clinopyroxene crystallization or during the formation of melilite. The presence of alkalies, S, F, and CO2 in spatially separated carbonate–salt melts contributed to the concentration and preservation of phosphorus in them at low temperatures, which led to the formation of apatite mineralization in ijolites and ore deposit in carbonatites.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

19.
In the Kovdor massif, labuntsovite-group minerals occur in dolomite carbonatite veins (labuntsovite-Mg), in a natrolite-calcite vein (lemmleinite-Ba and labuntsovite-Fe), and in calcite pockets and veinlets cutting fenites (late labuntsovite-Mg). They are closely intergrown with paragenetic carbonates, and this makes it possible to estimate their crystallization temperature from the fluid inclusions entrapped in dolomite (≥265°C) and calcite (175–225°C). The earlier labuntsovite-Mg was formed under relatively acidic conditions, whereas later labuntsovite-calcite mineralization was derived from alkaline solutions.  相似文献   

20.
For better understanding of the fluid phase sources of carbonatites of Guli alkaline-ultrabasic intrusion (Maymecha-Kotuy complex) we have studied isotope composition of He and Ne in the carbonatites of different formation stages. The data definitely point to the subcontinental lithospheric mantle (SCLM) as a primary source of fluid phase of Guli carbonatites. The absence of plume signature in such a plume-like object (from petrological point of view) could be explained in terms that Guli carbonatites have been formed at the waning stage of plume magmatic activity with an essential input of SCLM components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号