首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new instrument of broadband solar radio spectrometer working at waveband 4.5-7.5GHz was developed at Purple Mountain Observatory for Solar Maximum 23. Some new results of spectral observation have been obtained since August 1999.Two typical type Ⅲμbursts with rich fine structures are presented and some interesting features discussed.  相似文献   

2.
3.
4.
In an earlier research the employment of a radiation transport model with angle-dependent partial frequency redistribution, self-absorption by interplanetary hydrogen, realistic solar HLyαemission profile, and a time dependent `hot' hydrogen model to analyze 5 interplanetary HLyα glow spectra obtained with theHubble–Space–Telescope–GHRS spectrometer, has not resulted in unequivocal determination of a set of thermodynamical parameters of the interstellar hydrogen The residual discrepancies between the model and the data concern the observations performed within an interval of 1 year close to the solar minimum from very similar lines of sight. In this paper we investigate by calculating interplanetary HLyα lines with the use of a one hydrogen distribution and several solar HLyα line profiles whether this residual may be caused by possible variations in time of the shape of the solar HLyα emission line profile which cause variable illuminations of the interplanetary gas. These variations of illuminations cause variations in Doppler shift of the resonant interplanetary HLyα line that can amount to ≃ 4 km s-1in the line peak. Consequently we conclude that without adequate knowledge of the solar HLyα emission line profile during spectral observations of the interplanetary hydrogen gas it is impossible to obtain an agreement between models and observations better than by this value. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
1.5D Vlasov – Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the context of solar physics. The simulations mimic the plasma emission mechanism and Larmor-drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that a 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to the Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. The generated perturbations consist of two parts: i) non-escaping (trapped) Langmuir type oscillations, which are localised in the regions of density inhomogeneity, and are highly filamentary, with the period of appearance of the filaments close to electron plasma frequency in the dense regions; and ii) escaping electromagnetic radiation with phase speeds close to the speed of light. When the density gradient is removed (i.e. when plasma becomes stable to the Larmor-drift instability) and a low density super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, the plasma emission mechanism generates non-escaping Langmuir type oscillations, which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips (the narrow-band line emission) observed in some dynamical spectra. Predictions of quasilinear theory are: i) the electron free streaming and ii) the long relaxation time of the beam, in accord with the analytic expressions. These are corroborated via direct, fully-kinetic simulation. Finally, the interplay of the Larmor-drift instability and plasma emission mechanism is studied by considering a dense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. The latter case enables one to study the deviations from the quasilinear theory.  相似文献   

6.
7.
Kan Liou  Chin-Chun Wu 《Solar physics》2016,291(12):3777-3792
Interplanetary magnetic field and solar wind plasma density observed at 1 AU during Solar Cycle 23?–?24 (SC-23/24) minimum were significantly smaller than those during its previous solar cycle (SC-22/23) minimum. Because the Earth’s orbit is embedded in the slow wind during solar minimum, changes in the geometry and/or content of the slow wind region (SWR) can have a direct influence on the solar wind parameters near the Earth. In this study, we analyze solar wind plasma and magnetic field data of hourly values acquired by Ulysses. It is found that the solar wind, when averaging over the first (1995.6?–?1995.8) and third (2006.9?–?2008.2) Ulysses’ perihelion (\({\sim}\,1.4~\mbox{AU}\)) crossings, was about the same speed, but significantly less dense (\({\sim}\,34~\%\)) and cooler (\({\sim}\,20~\%\)), and the total magnetic field was \({\sim}\,30~\%\) weaker during the third compared to the first crossing. It is also found that the SWR was \({\sim}\,50~\%\) wider in the third (\({\sim}\,68.5^{\circ}\) in heliographic latitude) than in the first (\({\sim}\,44.8^{\circ}\)) solar orbit. The observed latitudinal increase in the SWR is sufficient to explain the excessive decline in the near-Earth solar wind density during the recent solar minimum without speculating that the total solar output may have been decreasing. The observed SWR inflation is also consistent with a cooler solar wind in the SC-23/24 than in the SC-22/23 minimum. Furthermore, the ratio of the high-to-low latitude photospheric magnetic field (or equatorward magnetic pressure force), as observed by the Mountain Wilson Observatory, is smaller during the third than the first Ulysses’ perihelion orbit. These findings suggest that the smaller equatorward magnetic pressure at the Sun may have led to the latitudinally-wider SRW observed by Ulysses in SC-23/24 minimum.  相似文献   

8.
On the basis of our multiwavelength observations made with the one-dimensional RATAN-600 radio telescope, we study the inversion of the circular polarization in the solar microwave emission at different frequencies. The inversion is detected in the emission of flare-producing active regions (FPARs) at various stages of their development, starting from the pre-flare stage. During the latest 23rd solar cycle maximum, numerous FPARs revealed spectral inhomogeneities in their polarized microwave radiation (Bogod and Tokhchukova, 2003, Astron. Lett. 29, 263). Here, we discuss a particular case of such inhomogeneities, the frequency-dependent double inversion of the sign of circular polarization, which probably reflects some essential processes in FPARs. We consider several mechanisms for the double inversion: linear interaction of waves in the region of a quasitransverse magnetic field, the propagation of waves through a region of zero magnetic field, the scattering of radio waves on waves of high-frequency plasma turbulence, the influence of the current fibrils on the propagation of the radio emission, and the magnetic “dips,” in which the direction of magnetic field lines changes the sign relative to the observer. All of them have shortcomings, but the last mechanism explains the observations the best.  相似文献   

9.
In the years 2002 – 2005, 38 groups of the reverse drift bursts (RDBs) were observed in the 0.8 – 4.5 GHz frequency range by the Ondřejov radiospectrograph. In 21 cases, which were observed at the times of the RHESSI observations, spatial structure, positional changes, and spectra of X-ray sources during RDB observations are studied in detail. First, based on the frequency drift and the spatial structure of the associated X-ray source, the events are classified as: (a) fast drifting RDBs with a compact X-ray source, (b) fast drifting RDBs with a multiple X-ray source (FM), and slowly drifting RDBs. Then, the spectra of X-ray sources at the times of RDBs are analyzed. It is found that most fast drifting RDBs (16 of 17 cases) are associated with the spectra having a distinct power-law (non-thermal) component. In contrast, the X-ray spectra associated with the slowly drifting RDBs are predominantly purely thermal (in three out of four cases; in the 26 July 2004, case the X-ray spectrum is thermal and high temperature, with non-thermal component). Two special cases of RDBs observed during the 28 October 2003, and 23 July 2004, flares are added for comparison. The most frequent events are those with fast drifting RDBs, a compact short-lasting X-ray sources, and a power-law X-ray spectrum. The individual reverse drift bursts (∼1 s duration) do not show a clear temporal association with individual peaks of hard X-ray bursts. During slowly drifting RDBs the shape of the associated X-ray source changed or expanded. Among them the most interesting one was observed in 26 July 2004, when the very slowly drifting RDBs (+40 MHz s−1) were associated with an X-ray loop-like source continuously elongating in the southwest direction. In the most cases the model of RDBs with electron beams is compatible with the observations, but in flares on 26 July 2004, and 28 October 2003, the RDBs are probably generated by some other type of an agent; we propose here a thermal conduction front.  相似文献   

10.
11.
We propose a method to determine the thickness of non-edge-on disk galaxies from their observed structure of spiral arms, based on the solution of the truly three-dimensional Poisson‘s equation for a logarithmic disturbance of density and under the condition where the self-consistency of the density wave theory is no longer valid. From their measured number of arms, pitch angle and location of the innermost point of the spiral arms, we derive and present the thicknesses of 34 spiral galaxies.  相似文献   

12.
We investigate the excitation of magnetoacoustic–gravity waves generated from localized pulses in the gas pressure as well as in the vertical component of velocity. These pulses are initially launched at the top of the solar photosphere, which is permeated by a weak magnetic field. We investigate three different configurations of the background magnetic field lines: horizontal, vertical, and oblique to the gravitational force. We numerically model magnetoacoustic–gravity waves by implementing a realistic (VAL-C) model of the solar temperature. We solve the two-dimensional ideal magnetohydrodynamic equations numerically with the use of the FLASH code to simulate the dynamics of the lower solar atmosphere. The initial pulses result in shocks at higher altitudes. Our numerical simulations reveal that a small-amplitude initial pulse can produce magnetoacoustic–gravity waves, which are later reflected from the transition region due to the large-temperature gradient. The cavities in the lower solar atmosphere are found to have the best conditions to act as a resonator for various oscillations, including their trapping and leakage into the higher atmosphere. Our numerical simulations successfully model the excitation of such wave modes, their reflection and trapping, as well as the associated plasma dynamics.  相似文献   

13.
The results of the solar radius measurements from February 2001 to November 2003 with the solar astrolabe at the TUBITAK National Observatory are presented. The mean semi-diameter for the period, corrected for systematic effects such as the Fried parameter and the zenith distance, is found to be 959.29 ± 0.01 arc sec. A comparison of the monthly averages of the solar radius with the monthly means of sunspot numbers shows that the semi-diameter of the Sun increases with an amplitude of 0.017 arc sec per year in opposite phase with solar cycle 23.  相似文献   

14.
The north – south (N – S) asymmetry of solar activity is investigated by using the data on coronal green-line brightness and total number and total area of sunspots over the period of 1939  –  2001. Typical time variations of the N – S asymmetry are found to be consonant in these indices. Quasi-biennial oscillations (QBO) of solar activity are well recognizable in the N – S asymmetry of the examined indices. Moreover, the QBO are much better manifested in the N – S asymmetry of the individual indices than in the original (N plus S) indices. The time variations of relative QBO power are synchronous for the N – S asymmetry of various solar activity indices whereas such a synchronization is weaker for the indices themselves. It is revealed that the relative QBO power found in the N – S asymmetry of the studied indices has a negative correlation with the value of the N – S asymmetry itself. The findings indicate that the N – S asymmetry should be regarded as a fundamental phenomenon of solar activity similarly manifested in different activity indices. These findings should be taken into account when any dynamo theory of solar activity is constructed.  相似文献   

15.
Power-law spectra of 1–2 GHz narrowband dm-spikes   总被引:3,自引:0,他引:3  
Karlický  Marian  Jiřička  Karel  Sobotka  Michal 《Solar physics》2000,194(1):165-174
Twelve examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transforming of the frequency scales to heights in the solar atmosphere, the indices of the power-law power spectra are determined. The derived power-law indices are scattered in a broad range of values (–0.80––2.85). In some cases they considerably deviate from the previously found value of –5/3. A change of the power-law index above logk2.5 was also found in some cases. In the two longest events the time evolution of their power spectra as well as their indices were studied. While in most parts of the radio spectra the spectral index remains constant, in one part its absolute value increases with the spike intensity increase. Finally, the results, especially the broad range of power-law indices, are briefly discussed.  相似文献   

16.
On 13 December 2006, some unusual radio bursts in the range 2.6?–?3.8 GHz were observed during an X3.4 flare/CME event from 02:30 to 04:30 UT in active region NOAA 10930 (S06W27) with the digital spectrometers of the National Astronomical Observatories of China (NAOC). During this event many spikes were detected with the high temporal resolution of 8 ms and high frequency resolution of 10 MHz. Many of them were found to have complex structures associated with other radio burst types. The new observational features may reflect certain emission signatures of the electron acceleration site. In this paper, we present the results of the analysis of the new observational features of the complex spikes. According to the observed properties of the spikes, we identify five classes. Their observational parameters, such as duration, bandwidth, and relative bandwidth, were determined. Most spikes had negative polarization, but spikes with positive polarization were observed during a short time interval and were identified as a separate class. Based on the analysis of observations with Hinode/SOT (Solar Optical Telescope) we suggest that the sources of the spikes with opposite polarizations were different. Combined observations of spikes and fiber bursts are used to estimate the magnetic field strength in the source.  相似文献   

17.
The Solar Cycle 23?–?24 minimum has been considered unusually deep and complex. In this article we study the ionospheric behavior during this minimum, and we have found that, although observable, the ionosphere response is minor and marginally exceeds the range of normal geophysical variability of the system. Two main ionospheric parameters have been studied: vertical TEC (vTEC, total electron content) and NmF2 (peak concentration of the F region). While vTEC showed a consistent modest decrease of the mean value, NmF2 behavior was less clear, with instances where the mean value for the minimum 23?–?24 was even higher that for the minimum 22?–?23. More extensive work is required to gain a better understanding of the ionospheric behavior under conditions similar to those presented in the last minimum.  相似文献   

18.
We investigate the M1.8 solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3?–?50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram has indicated two statistically significant time periods of about 16 and 36 s. The 36 s QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16 s QPP were found in thermal and nonthermal HXR emission both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP, and the estimated physical parameters of the flare loops allowed us to interpret the observed QPP in terms of MHD oscillations excited in two spatially separated, but interacting systems of flaring loops.  相似文献   

19.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

20.
This paper applies a Kuramoto model of coupled oscillators to investigate the north–south (N–S) solar asymmetry and properties of meridional circulation. We focus our study on the asymmetry of the 11-year phase, which is slight but persistent: only two changes of sign (around 1928 and 1968) are observed in the past century. We present a model of two non-linear coupled oscillators that links the hemispheric phase asymmetry of sunspots with the asymmetry of the meridional flow. We use a Kuramoto model with evolving frequencies and constant symmetric coupling to show how asymmetry in meridional circulation could produce a persistent phase lead of one solar hemisphere over the other. We associate the natural frequencies of the two oscillators with the velocities of the meridional flow cells in the northern and southern hemispheres. We assume the respective circulations to be independent and estimate the value of the relevant cross-equatorial coupling by the coupling coefficient in the Kuramoto model. We find that a persistent N–S asymmetry of sunspots and the change of the leading hemisphere could indeed both be the result of the evolving frequencies of meridional circulation; the necessary asymmetry of the meridional flow may be small; and the cross-equatorial coupling has an intermediate range value. Possible applications of these results in solar dynamo models are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号