首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study 50 seismic events, preceding and accompanying the eruptions occurring in 1981 and 1983, have been considered. Seismic moments, fault radii, stress drops and seismic energies have been calculated using Brune’s model (J Geophys Res 75:4997–5009, 1970; J Geophys Res 76:5002, 1971); site, anelastic attenuation along the propagation path, geometrical spreading and interaction with the free surface effects are taken into account. For each event we have also estimated the equivalent Wood–Anderson magnitude (MWAeq) (Scherbaum and Stoll in Bull Seism Soc Am 73:1321–1343, 1983); relations among all these source parameters have been determined. Furthermore, the hypothesis of self-similarity (Aki in J Geophys Res 72:1217–1231, 1967) is not verified for events with seismic moments <1012 N-m: in fact the relationship between log-stress drop and log-moment is linear up to a moment of 1012 N-m (events of 1981 eruption), while for higher moments (events of 1983 eruption) the slope of the regression line is not significantly different from zero. We suppose that such a behaviour is related to a heterogeneous medium with barriers on the faults. Finally, the main conclusion is that eruptions of 1981 and 1983 differ from one another both in eruptive and seismic aspects; analysis of seismic energies indicates an increase in Mt. Etna’s activity, confirmed by studies performed on the following lateral eruption of 1991–1993 (Patanè et al. in Bull Volcanol 47:941–952, 1995), occurring on the same structural trend.  相似文献   

2.
Subsurface thermal structure in Tohoku district are characterized by existing data such as geothermal resources maps, drill hole thermal gradients, Curie point depths and hypocenters distribution maps. The collected data are registered in a database system, then, compared in plan view, cross-section and bird's-eye pictures. The comparison indicates that subsurface temperatures extrapolated from drill hole thermal gradients are generally concordant to the Curie point depth, assumed to be 650 °C. Tohoku district is generally divided into 5 type areas; fore arc lowland, fore arc mountain country, Quaternary volcanic terrain, back arc lowland and back arc mountain country. The surface thermal manifestations in Quaternary volcanic terrain are mainly controlled by the magma chambers as heat sources, while, surface thermal features such as hot springs in non-volcanic areas are controlled by degrees of heat flows, and hydrothermal flows in permeable Cenozoic formations and along permeable fault zones.  相似文献   

3.
南海东沙海域天然气水合物地震数据多次压制及速度特征   总被引:3,自引:0,他引:3  
多次波衰减是海洋地震数据处理中的一个关键问题。东沙海域多次波极其发育,由于地形的急剧变化和地质条件的影响,多次波变形严重(不符合双曲线规律)。采用常规的处理方法效果并不明显,并可能造成成果剖面上出现明显的多次压制痕迹,很难达到保幅处理。针对此区多次波的特点,提出一种频率分离的方法将数据分离后再进行不同处理,可以很好地解决多次波的压制并突出有效波;在没有有效反射的位置,剖面的背景噪音也更符合视觉习惯;更重要的是,处理中没有频率损失,处理结果更和谐。另外,叠前偏移处理技术的运用可以使含水合物地层的接触关系、反射特征更清楚。叠前时间偏移所建立的速度模型也能够表现含水合物地层、BSR与合游离气层的相对速度关系。  相似文献   

4.
多次波衰减是海洋地震数据处理中的一个关键问题。东沙海域多次波极其发育,由于地形的急剧变化和地质条件的影响,多次波变形严重(不符合双曲线规律)。采用常规的处理方法效果并不明显,并可能造成成果剖面上出现明显的多次压制痕迹,很难达到保幅处理。针对此区多次波的特点,提出一种频率分离的方法将数据分离后再进行不同处理,可以很好地解决多次波的压制并突出有效波;在没有有效反射的位置,剖面的背景噪音也更符合视觉习惯;更重要的是,处理中没有频率损失,处理结果更和谐。另外,叠前偏移处理技术的运用可以使含水合物地层的接触关系、反射特征更清楚。叠前时间偏移所建立的速度模型也能够表现含水合物地层、BSR与含游离气层的相对速度关系。  相似文献   

5.
The Hidaka Collision Zone (HCZ), central Hokkaido, Japan, is a good target for studies of crustal evolution and deformation processes associated with an arc–arc collision. The collision of the Kuril Arc (KA) with the Northeast Japan Arc (NJA), which started in the middle Miocene, is considered to be a controlling factor for the formation of the Hidaka Mountains, the westward obduction of middle/lower crustal rocks of the KA (the Hidaka Metamorphic Belt (HMB)) and the development of the foreland fold-and-thrust belt on the NJA side. The “Hokkaido Transect” project undertaken from 1998 to 2000 was a multidisciplinary effort intended to reveal structural heterogeneity across this collision zone by integrated geophysical/geological research including seismic refraction/reflection surveys and earthquake observations. An E–W trending 227 km-long refraction/wide-angle reflection profile found a complicated structural variation from the KA to the NJA across the HCZ. In the east of the HCZ, the hinterland region is covered with 4–4.5 km thick highly undulated Neogene sedimentary layers, beneath which two eastward dipping reflectors were imaged in a depth range of 10–25 km, probably representing the layer boundaries of the obducting middle/lower crust of the KA. The HMB crops out on the westward extension of these reflectors with relatively high Vp (>6.0 km/s) and Vp/Vs (>1.80) consistent with middle/lower crustal rocks. Beneath these reflectors, more flat and westward dipping reflector sequences are situated at the 25–27 km depth, forming a wedge-like geometry. This distribution pattern indicates that the KA crust has been delaminated into more than two segments under our profile. In the western part of the transect, the structure of the fold-and-thrust belt is characterized by a very thick (5–8 km) sedimentary package with a velocity of 2.5–4.8 km/s. This package exhibits one or two velocity reversals in Paleogene sedimentary layers, probably formed by imbrication associated with the collision process. From the horizontal distribution of these velocity reversals and other geophysical/geological data, the rate of crustal shortening in this area is estimated to be greater than 3–4 mm/year, which corresponds to 40–50% of the total convergence rate between the NJA and the Eurasian Plate. This means that the fold-and-thrust belt west of the HCZ is absorbing a large amount of crustal deformation associated with plate interaction across Hokkaido Island.  相似文献   

6.
The Tyrrhenian Sea is a Neogene back-arc basin formed by continental extension at the rear of the eastward migrating Apennine subduction system. Its central part, generated from Tortonian to Pliocene, includes the Sardinia rifted margin to the west, an area with large volcanoes in the deep central sector, and the Campania rifted margin to the east. A reprocessing of some 2000 km of MCS lines, a new swath bathymetric map, and a review of previous geological and geophysical data allow to analyse the nature and distribution of continental vs. oceanic crust in this area, which evolved in a short time span.The central portion of the southern Tyrrhenian Sea is characterized by MOHO at about 10 km depth. North of Magnghi and Vavilov Smts, this thinned crustal domain include a wide continent–ocean transition, with the occurrence of extensional allochthons and of serpenitinzed sub-continental mantle, recalling other well known rifted margins, as the Iberia one. Sectors floored by oceanic crust should occur, mainly in the southern part of the study area, but they do not appear related to discrete spreading ridges. The continent–ocean boundary cannot be drawn unequivocally in the area, due also to the occurrence of widespread and huge magmatic manifestations not related to oceanic spreading. These portions of the southern Tyrrhenian Sea represents therefore a complex oceanic back-arc basin surrounded by magma-rich rifted continental margins.The abundant igneous manifestations and the very high stretching rates observed in the area may be related to the fact that the present Tyrrhenian area was occupied by an orogenic domain affected by shortening until middle Miocene times, which is just before the Late Miocene onset of back-arc extension. The lithosphere in the region had then to be rheologically weak. Abundant generation and ascent of magmas, mostly of Ocean Island Basalt type, was favoured by the large lithospheric permeability induced by strong extensional deformations.  相似文献   

7.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   

8.
This paper presents the main recent results obtained by the seismological and geophysical monitoring arrays in operation in the rift of Corinth, Greece. The Corinth Rift Laboratory (CRL) is set up near the western end of the rift, where instrumental seismicity and strain rate is highest. The seismicity is clustered between 5 and 10 km, defining an active layer, gently dipping north, on which the main normal faults, mostly dipping north, are rooting. It may be interpreted as a detachment zone, possibly related to the Phyllade thrust nappe. Young, active normal faults connecting the Aigion to the Psathopyrgos faults seem to control the spatial distribution of the microseismicity. This seismic activity is interpreted as a seismic creep from GPS measurements, which shows evidence for fast continuous slip on the deepest part on the detachment zone. Offshore, either the shallowest part of the faults is creeping, or the strain is relaxed in the shallow sediments, as inferred from the large NS strain gradient reported by GPS. The predicted subsidence of the central part of the rift is well fitted by the new continuous GPS measurements. The location of shallow earthquakes (between 5 and 3.5 km in depth) recorded on the on-shore Helike and Aigion faults are compatible with 50° and 60° mean dip angles, respectively. The offshore faults also show indirect evidence for high dip angles. This strongly differs from the low dip values reported for active faults more to the east of the rift, suggesting a significant structural or rheological change, possibly related to the hypothetical presence of the Phyllade nappe. Large seismic swarms, lasting weeks to months, seem to activate recent synrift as well as pre-rift faults. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (M = 6 to 6.7) is very high within a few decades. Furthermore, the region west to Aigion is likely to be in an accelerated state of extension, possibly 2 to 3 times its mean interseismic value. High resolution strain measurement, with a borehole dilatometer and long base hydrostatic tiltmeters, started end of 2002. A transient strain has been recorded by the dilatometer, lasting one hour, coincident with a local magnitude 3.7 earthquake. It is most probably associated with a slow slip event of magnitude around 5 ± 0.5. The pore pressure data from the 1 km deep AIG10 borehole, crossing the Aigion fault at depth, shows a 1 MPa overpressure and a large sensitivity to crustal strain changes.  相似文献   

9.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

10.
岩石圈热-流变结构研究是揭示岩石圈范围内热状态的有效手段,开展地热异常区的岩石圈热-流变结构研究可以对热源贡献进行有效约束。东南沿海地区是我国地热资源重要分布区,地表出露大量天然温泉,地热钻探揭露深部具有较高的地温梯度,然而关于其热源机制尚未有定论,且深部是否赋存干热岩资源亦不清楚。以广东惠州黄沙洞地热田为研究对象,分析岩石圈尺度温度分布和流变强度,探讨黄沙洞地热田的热源构成,分析浅部水热系统的热影响,并对干热岩资源前景进行分析。结果表明:(1)黄沙洞地热田水热活动影响下地表热通量为130.3 mW/m2,地壳热流与地幔热流值相近,表现为温壳温幔型岩石圈热结构,此外,构造活动相关热流达到了30.5~60.3 mW/m2;(2)岩石圈流变结构显示中地壳存在韧性流变层,上地壳与下地壳以脆性破裂为主,下地壳与地幔表现出流变结构耦合,为相对稳固的地壳底界;(3)黄沙洞地热田的热源以地壳构造活动产生的热源为主,地幔热源和放射性生热是主要的热源组成部分,构造热作用的主要方式包括区域深断裂的热聚敛和水热系统循环换热,两者可能通过“接力式”热传递携带热量至浅表;(4)区域深断裂的热聚敛在构造热作用中的占比是影响干热岩资源前景的关键因素。本项研究可为后续东南沿海同类型地区的干热岩资源勘查与靶区选址提供参考。  相似文献   

11.
Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting in response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.  相似文献   

12.
沉积盆地内地热田地热异常成因机制的定量研究对认识盆地浅部不同构造带之间传热与聚热的差异以及指导盆地中低温地热资源的勘探有着重要的理论与现实意义。河北献县地热田在厚1300~1500 m新生界盖层覆盖下发育蓟县系雾迷山组(Jxw)基岩热储,已开发区的井口水温多高达90~95℃,是一个典型的中低温传导型地热资源区。本文基于横穿献县凸起及邻区的地震剖面,运用2D有限元数值模拟技术,定量—半定量地分析了献县凸起带及邻区热传导与热聚集的差异,并简述了对地热勘探的指导意义。模拟表明,献县凸起带盖层内的地热正异常是高热导率的基岩凸起段所引起的热量快速传递、并在盖层内逐渐累积的结果;献县地热田Jxw组热储顶部的地层温度比饶阳凹陷的同深度地层至少高~20℃,与其近3600 m的基岩凸起幅度密切相关。献县凸起带的地温场在纵向上具“非对称镜像”分布特征,且盖层段的平均地温梯度约为热储层段的3倍,表明浅部盖层段的地热正异常越“富集”,则深部基岩热储段的地热负异常越“亏空”。“高导均化深度”代表了基岩凸起段深部与其相邻凹陷区平均地温梯度相等的热传导平衡线位置。有效盖层覆盖下的基岩凸起带是地热勘探的有利区带,基岩...  相似文献   

13.
周春景  吴中海 《地质通报》2012,31(0203):326-336
在整理、分析云南大理至瑞丽拟建铁路沿线及其邻区现今地温场分布特征的基础上,进一步总结前人的资料,综合研究、探讨了该区地温场与岩浆活动、活动构造、地震活动、区域深部构造的关系。结果表明,该区中高温温泉(中高地温场)的空间分布与地表岩浆岩的出露、地表主要活动断裂带的分布都具有较好的对应关系。综合研究后认为,该区的中高温温泉可归结为岩浆热源型、断裂深循环型和岩浆热源叠加断裂深循环作用型3种基本成因类型。同时还发现,该区的温泉分布与区域地震活动空间上也存在密切的关系,并据此将区内划分为4个地震区带。研究结果表明,本区地表温泉分布所反映出的地温场特征对本区的工程稳定性评价具有重要的指示意义。  相似文献   

14.
周春景  吴中海 《地质通报》2012,31(203):326-336
在整理、分析云南大理至瑞丽拟建铁路沿线及其邻区现今地温场分布特征的基础上,进一步总结前人的资料,综合研究、探讨了该区地温场与岩浆活动、活动构造、地震活动、区域深部构造的关系。结果表明,该区中高温温泉(中高地温场)的空间分布与地表岩浆岩的出露、地表主要活动断裂带的分布都具有较好的对应关系。综合研究后认为,该区的中高温温泉可归结为岩浆热源型、断裂深循环型和岩浆热源叠加断裂深循环作用型3种基本成因类型。同时还发现,该区的温泉分布与区域地震活动空间上也存在密切的关系,并据此将区内划分为4个地震区带。研究结果表明,本区地表温泉分布所反映出的地温场特征对本区的工程稳定性评价具有重要的指示意义。  相似文献   

15.
The aim of this paper was to explore new factors that might be reasons for the occurrence of fluoride-rich groundwater in the area around a construction site. During the construction of two deep shafts of the Mizunami Underground Research Laboratory (MIU) in Mizunami city, central Japan, a large quantity of groundwater with high fluoride concentration was charged into the shafts. Chemical investigation carried out during the excavation revealed that fluoride concentrations in the area around the MIU site greatly exceeded those prescribed by Japanese standards. Therefore, the origin of fluoride ion was experimentally investigated. Samples were collected from the core of a deep borehole drilled in the study area. The weathering - and alteration levels of the collected granites varied greatly. Granitic powders were used to measure fluoride content in the granitic rock mass. The fluoride content ranged between 200 and 1300 mg/kg. The powders were reacted with purified water for 80 days. The results of water–rock interaction showed granitic rock to be one of the main sources of fluoride-rich groundwater in Mizunami area. Fluoride concentrations in these solutions that were shaken for 80 days varied between 2 and 7 mg/l. This change may have occurred as a result of the spatial distribution of fluoride ions in the granite mass as evidenced by mineralogical analysis of fluoride content in several specimens. X-ray powder diffraction analysis of the rock before- and after the water–rock interaction tests manifested that the presence of fluorite mineral was relatively small compared to other minerals. The degree of weathering and alteration might be an additional factor causing dissolution of fluoride-rich minerals. However, it was difficult to interpret the change in fluorite composition by X-ray diffraction analysis.  相似文献   

16.
17.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

18.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

19.
Collisional structures from the closure of the Tornquist Ocean and subsequent amalgamation of Avalonia and Baltica during the Caledonian Orogeny in the northern part of the Trans-European Suture Zone (TESZ) in the SW Baltic Sea are investigated. A grid of marine reflection seismic lines was gathered in 1996 during the DEKORP-BASIN '96 campaign, shooting with an airgun array of 52 l total volume and recording with a digital streamer of up to 2.1 km length. The detailed reflection seismic analysis is mainly based on post-stack migrated sections of this survey, but one profile has also been processed by a pre-stack depth migration algorithm. The data provides well-constrained images of upper crustal reflectivity and lower crustal/uppermost mantle reflections. In the area of the Caledonian suture, a reflection pattern is observed with opposing dips in the upper crust and the uppermost mantle. Detailed analysis of dipping reflections in the upper crust provides evidence for two different sets of reflections, which are separated by the O-horizon, the main decollement of the Caledonian deformation complex. S-dipping reflections beneath the sub-Permian discontinuity and above the O-horizon are interpreted as Caledonian thrust structures. Beneath the O-horizon, SW-dipping reflections in the upper crust are interpreted as ductile shear zones and crustal deformation features that evolved during the Sveconorwegian Orogeny. The Caledonian deformation complex is subdivided into (1) S-dipping foreland thrusts in the north, (2) the S-dipping suture itself that shows increased reflectivity, and (3) apparently NE-dipping downfaulted sedimentary horizons south of the Avalonia–Baltica suture, which may have been reactivated during Mesozoic normal faulting. The reflection Moho at 28–35 km depth appears to truncate a N-dipping mantle structure, which may represent remnant structures from Tornquist Ocean closure or late-collisional compressional shear planes in the upper mantle. A contour map of these mantle reflections indicates a consistent northward dip, which is steepest where there is strong bending of the Caledonian deformation front. The thin-skinned character of the Caledonian deformation complex and the fact that N-dipping mantle reflections do not truncate the Moho indicate that the Baltica crust was not mechanically involved in the Caledonian collision and, therefore, escaped deformation in this area.  相似文献   

20.
Along the Rio Muni transform margin, the transition from continental to oceanic crust occurs across a region of approximately 75-km width. The crust in this transition region, termed proto-oceanic crust (POC), is neither purely oceanic nor continental in composition and structure. Improved seismic reflection images from the PROBE deep-imaging dataset, combined with gravity modelling, have shed new light on the structural architecture of the margin and the composition of the POC. On these newly migrated seismic reflection sections, four fracture zones associated with large steps in the Moho are identified, splitting the POC into three segments. Models in which these segments are composed of oceanic or stretched continental crust do not provide satisfactory predictions of the gravity anomaly. A model of serpentinized peridotite for two segments of POC, with the third segment composed of oceanic crust in between, does satisfy the observed gravity anomaly. Three alternative geological scenarios are proposed to explain the segmentation and composition of the POC: (a) serpentinized upper mantle becoming unroofed and emplaced at basement surface level along detachment surfaces confined to discrete segments by the fracture zones, (b) oblique-slip on transform faults that allow the circulation of water into the mantle and emplacement of serpentinized upper mantle material; or (c) intense faulting of anomalous oceanic crust as a result of magma depletion allowing hydrothermal circulation and the emplacement of serpentinized peridotites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号