首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative form of the Boussinesq equations is developed, creating a model which is fully nonlinear up to O(μ4) (μ is the ratio of water depth to wavelength) and has dispersion accurate to the Padé [4,4] approximation. No limitation is imposed on the bottom slope; the variable distance between free surface and sea bottom is accounted for by a σ-transformation. Two reduced forms of the model are also presented, which simplify O(μ4) terms using the assumption ε = O(μ2/3) (ε is the ratio of wave height to water depth). These can be seen as extensions of Serre's equations, with dispersions given by the Padé [2,2] and Padé [4,4] approximations. The third-order nonlinear characteristics of these three models are discussed using Fourier analysis, and compared to other high-order formulations of the Boussinesq equations. The models are validated against experimental measurements of wave propagation over a submerged breakwater. Finally, the nonlinear evolution of wave groups along a horizontal flume is simulated and compared to experimental data in order to investigate the effects of the amplitude dispersion and the four-wave resonant interaction.  相似文献   

2.
Using Boussinesq scaling for water waves while imposing no constraints on rotationality, we derive and test model equations for nonlinear water wave transformation over varying depth. These use polynomial basis functions to create velocity profiles which are inserted into the basic equations of motion keeping terms up to the desired Boussinesq scaling order, and solved in a weighted residual sense. The models show rapid convergence to exact solutions for linear dispersion, shoaling, and orbital velocities; however, properties may be substantially improved for a given order of approximation using asymptotic rearrangements. This improvement is accomplished using the large numbers of degrees of freedom inherent in the definitions of the polynomial basis functions either to match additional terms in a Taylor series, or to minimize errors over a range. Explicit coefficients are given at O(μ2) and O(μ4), while more generalized basis functions are given at higher order. Nonlinear performance is somewhat more limited as, for reasons of complexity, we only provide explicitly lower order nonlinear terms. Still, second order harmonics may remain good to kh  10 for O(μ4) equations. Numerical tests for wave transformation over a shoal show good agreement with experiments. Future work will harness the full rotational performance of these systems by incorporating turbulent and viscous stresses into the equations, making them into surf zone models.  相似文献   

3.
Submerged breakwaters (SBWs) are becoming a popular option for coastal protection, mainly due to their low aesthetic impact on the natural environment. However, SBWs have rarely been employed for coastal protection in the past and therefore, their efficacy remains largely unknown. The main objective of the present study was to investigate the structural and environmental conditions that govern the mode of shoreline response (i.e shoreline erosion vs shoreline accretion) to SBWs. The relative importance of the key structural and environmental parameters governing the response mode to a single shore parallel SBW is investigated through a combination of theoretical analysis and numerical modelling. Using physical considerations, a theoretical response-function model is derived under several simplifying assumptions including parallel depth contours, linear wave theory, shore normal waves, and no wave–current interaction. Numerical modelling is undertaken with the Mike21 model suite to simulate the depth averaged velocity fields (without morphological updating) due to waves acting on a single shore-parallel SBW located on a schematised beach with parallel depth contours. In total 92 coupled wave–current simulations were undertaken. The results indicate that the mode of shoreline response to the SBW can be expressed in terms of the two non-dimensional parameters hB/H0 and (sB/hB)3/2(LB/hB)2(A3/hB)1/2 (variables defined in the text).  相似文献   

4.
《Coastal Engineering》2006,53(4):311-318
The extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Eng., 32, 91–117] and Lee et al. [Lee, C., Kim, G., Suh, K.D., 2003. Extended mild-slope equation for random waves. Coastal Eng., 48, 277–287] are compared analytically and numerically to determine their applicability to random wave transformation. The geometric optics approach is used to compare the two models analytically. In the model of Suh et al., the wave number of the component wave with a local angular frequency ω is approximated with an accuracy of O(ω  ω¯) at a constant water depth, where ω¯ is the carrier frequency of random waves. In the model of Suh et al., however, the diffraction effects and higher-order bottom effects are considered only for monochromatic waves, and the shoaling coefficient of random waves is not accurately approximated. This inaccuracy arises because the model of Suh et al. was derived for regular waves. In the model of Lee et al., all the parameters of random waves such as wave number, shoaling coefficient, diffraction effects, and higher-order bottom effects are approximated with an accuracy of O(ω  ω¯). This approximation is because the model of Lee et al. was developed using the Taylor series expansion technique for random waves. The result of dispersion relation analysis suggests the use of the peak and weighted-average frequencies as a carrier frequency for Suh et al. and Lee et al. models, respectively. All the analytical results are verified by numerical experiments of shoaling of random waves over a slightly inclined bed and diffraction of random waves through a breakwater gap on a flat bottom.  相似文献   

5.
Boussinesq equations describing motions of internal waves in a two-fluid system with the presence of free surface are theoretically derived, and the associated essential properties are examined in this study. Eliminating the dependence on the vertical coordinate from all variables, four equations constitute the Boussinesq model with two flexible parameters, zu and zl, which indicate the specific elevations, respectively, in the upper and lower fluids. Similar to the Boussinesq model for a single-layer fluid, zu and zl are determined by matching the linear dispersion relation with Lamb's solution. This determines the optimal model. In the analysis stage, this problem is classified into two cases, the thicker-upper-layer case and the thicker-lower-case case, to avoid the possible divergence of wave properties as the thickness ratio grows. Since there exist two modes of motions that may be excited, cases of both modes are separately analyzed. Linear characteristics including the amplitude ratios and normalized particle velocities are analyzed. Second-order harmonic waves are examined to validate nonlinear behaviors of present model. Results of linear and nonlinear investigations show that the present model indeed extends the applicable range of traditional Boussinesq equations.  相似文献   

6.
A fully nonlinear Boussinessq-type model with several free coefficients is considered as a departure point. The model is monolayer and low order so as to simplify numerical solvability. The coefficients of the model are here considered functions of the local water depth. In doing so, we allow to improve the dispersive and shoaling properties for narrow banded wave trains in very deep waters. In particular, for monochromatic waves the dispersion and shoaling errors are bounded by ~ 2.8% up to kh = 100, being k the wave number and h the water depth. The proposed model is fully nonlinear in weakly dispersive conditions, so that nonlinear wave decomposition in shallower waters is well reproduced. The model equations are numerically solved using a fourth order scheme and tested against analytical solutions and experimental data.  相似文献   

7.
A ten-year data set for fetch- and depth-limited wave growth   总被引:1,自引:0,他引:1  
This paper presents the key results from a ten-year data set for Lake IJssel and Lake Sloten in The Netherlands, containing information on wind, storm surges and waves, supplemented with SWAN 40.51 wave model results. The wind speeds U10, effective fetches x and water depths d for the data set ranged from 0–24 m s 1, 0.8–25 km and 1.2–6 m respectively. For locations with non-sloping bottoms, the range in non-dimensional fetch x? ( = gxU10 2) was about 25–80,000, while the range in dimensionless depth d? ( = g d U10 2) was about 0.03–1.7. Land–water wind speed differences were much smaller than the roughness differences would suggest. Part of this seems due to thermal stability effects, which even play a role during near-gale force winds. For storm surges, a spectral response analysis showed that Lake IJssel has several resonant peaks at time scales of order 1 h. As for the waves, wave steepnesses and dimensionless wave heights H? ( = gHm0U10 2) agreed reasonably well with parametric growth curves, although there is no single curve to which the present data fit best for all cases. For strongly depth-limited waves, the extreme values of d? (0.03) and Hm0 / d (0.44) at the 1.7 m deep Lake Sloten were very close to the extremes found in Lake George, Australia. For the 5 m deep Lake IJssel, values of Hm0 / d were higher than the depth-limited asymptotes of parametric wave growth curves. The wave model test cases of this study demonstrated that SWAN underestimates Hm0 for depth-limited waves and that spectral details (enhanced peak, secondary humps) were not well reproduced from Hm0 / d = 0.2–0.3 on. SWAN also underestimated the quick wave response (within 0.3–1 h) to sudden wind increases. For the remaining cases, the new [Van der Westhuysen, A.J., Zijlema, M., and Battjes, J.A., 2007. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54, 151–170] SWAN physics yielded better results than the standard physics of Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285, except for persistent overestimations that were found for short fetches. The present data set contains many interesting cases for detailed model validation and for further studies into the evolution of wind waves in shallow lakes.  相似文献   

8.
Adjustment of Wind Waves to Sudden Changes of Wind Speed   总被引:1,自引:0,他引:1  
An experiment was conducted in a small wind-wave facility at the Ocean Engineering Laboratory, California, to address the following question: when the wind speed changes rapidly, how quickly and in what manner do the short wind waves respond? To answer this question we have produced a very rapid change in wind speed between U low (4.6 m s?1) and U high (7.1 m s?1). Water surface elevation and air turbulence were monitored up to a fetch of 5.5 m. The cycle of increasing and decreasing wind speed was repeated 20 times to assure statistical accuracy in the measurement by taking an ensemble mean. In this way, we were able to study in detail the processes by which the young laboratory wind waves adjust to wind speed perturbations. We found that the wind-wave response occurs over two time scales determined by local equilibrium adjustment and fetch adjustment, Δt 1/T = O(10) and Δt 2/T = O(100), respectively, in the current tank. The steady state is characterized by a constant non-dimensional wave height (H/gT 2 or equivalently, the wave steepness for linear gravity waves) depending on wind speed. This equilibrium state was found in our non-steady experiments to apply at all fetches, even during the long transition to steady state, but only after a short initial relaxation Δt 1/T of O(10) following a sudden change in wind speed. The complete transition to the new steady state takes much longer, Δt 2/T of O(100) at the largest fetch, during which time energy propagates over the entire fetch along the rays (dx/dt = c g) and grows under the influence of wind pumping. At the same time, frequency downshifts. Although the current study is limited in scale variations, we believe that the suggestion that the two adjustment time scales are related to local equilibrium adjustment and fetch adjustment is also applicable to the ocean.  相似文献   

9.
The paper presents a new model of electronic-vibrational kinetics of the products of ozone and molecular oxygen photodissociation in the terrestrial middle atmosphere. The model includes 45 excited states of the oxygen molecules O2(b 1, Σ g + ,v= 0−2), O2 (a 1Δ g , v= 0−5), and O2(X 3Σ g , v= 1−35) and of the metastable atom O (1 D) and over 100 aeronomic reactions. The model takes into account the dependence of quantum yields of the production of O2(a 1Δ g , v= 0−5) in a singlet channel of ozone photolysis in the Hartley band on the wavelength of photolytic emission. Taking account of the electronic-vibrational kinetics is important in retrieval of the vertical profiles of ozone concentration from measured intensities of the Atm and IR Atm emissions of the oxygen bands above 65 km and leads to an increase in the ozone concentration retrieved from the 1.27-μm emission, in contrast to the previous model of pure electronic kinetics. Sensitivity analysis of the new model is made for variations in the concentrations of atmospheric constituents ([O2], [N2], [O(3P)], [O3], [CO2]), the gas temperature, rate constants of the reactions, and quantum yields of the reaction products. A group of reactions that most strongly affect the uncertainty of ozone retrieval from measured intensities of atmospheric emissions of molecular oxygen O2(b 1Σ g + , v) and O2(a 1Δ g , v) has been determined. Original Russian Text ? V.A. Yankovsky, V.A. Kuleshov, R.O. Manuilova, A.O. Semenov, 2007, published in Izvestiya AN. Fizika Atmosfery i Okeana, 2007, Vol. 43, No. 4, pp. 557–569.  相似文献   

10.
Two sets of higher-order Boussinesq-type equations for water waves   总被引:1,自引:0,他引:1  
Z.B. Liu  Z.C. Sun 《Ocean Engineering》2005,32(11-12):1296-1310
Based on the classical Boussinesq model by Peregrine [Peregrine, D.H., 1967. Long waves on a beach. J. Fluid Mech. 27 (4), 815–827], two parameters are introduced to improve dispersion and linear shoaling characteristics. The higher order non-linear terms are added to the modified Boussinesq equations. The non-linearity of the Boussinesq model is analyzed. A parameter related to h/L0 is used to improve the quadratic transfer function in relatively deep water. Since the dispersion characteristic of the modified Boussinesq equations with two parameters is only equal to the second-order Padé expansion of the linear dispersion relation, further improvement is done by introducing a new velocity vector to replace the depth-averaged one in the modified Boussinesq equations. The dispersion characteristic of the further modified Boussinesq equations is accurate to the fourth-order Padé approximation of the linear dispersion relation. Compared to the modified Boussinesq equations, the accuracy of quadratic transfer functions is improved and the shoaling characteristic of the equations has higher accuracy from shallow water to deep water.  相似文献   

11.
《Coastal Engineering》1998,35(3):185-209
Two depth inversion algorithms (DIA) applicable to coastal waters are developed, calibrated, and validated based on results of computations of periodic waves shoaling over mild slopes, in a two-dimensional numerical wave tank based on fully nonlinear potential flow (FNPF) theory. In actual field situations, these algorithms would be used to predict the cross-shore depth variation h based on sets of values of wave celerity c and length L, and either wave height H or left–right asymmetry s2/s1, simultaneously measured at a number of locations in the direction of wave propagation, e.g., using video or radar remote sensing techniques. In these DIAs, an empirical relationship, calibrated for a series of computations in the numerical wave tank, is used to express c as a function of relative depth koh and deep water steepness koHo. To carry out depth inversion, wave period is first predicted as the mean of observed L/c values, and Ho is then predicted, either based on observed H or s2/s1 values. The celerity relationship is finally inverted to predict depth h. The algorithms are validated by applying them to results of computations for cases with more complex bottom topography and different incident waves than in the original calibration computations. In all cases, root-mean-square (rms)-errors for the depth predictions are found to be less than a few percent, whereas depth predictions based on the linear dispersion relationship—which is still the basis for many state-of-the-art DIAs—have rms-errors 5 to 10 times larger.  相似文献   

12.
Long ocean waves with periods of several minutes (surf-beats) were observed at a marine observation tower. We have analysed time series data of an envelope of incident swell, long period current velocity and surface elevation fluctuations. Current velocity was measued by an electromagnetic flow meter. Surf-beats amplitudeH (l) is shown to be proportional to 3/2 power of incident swell amplitudeH (s), and decreases with increase of depthh in proportional toh –1/2 such thatH (l) H (s) (H (s)/h)1/2. Frequency energy density functionP LL (f) of surface elevation had two dominant peaks whose frequencies were highly stable through the entire observational period. Cross-spectral analysis suggested that those peaks correspond to traveling edge waves caused by the excess momentum and mass flux in the surf zone. The forced long ocean waves predicted byLonguet-Higgins andStewart (1964) was ditected. Phase-shift and wave height of the wave with respect to those of incident swell envelope are shown to be in remarkable agreement with the predictions. However the forced long wave is only a minor component in the total energy of surf-beats. Current fields are shown to be largely composed of non-surface modes.  相似文献   

13.
《Coastal Engineering》2006,53(1):39-48
This paper describes a simple method for modelling wave breaking over submerged structures, with the view of using such modelling approach in a coastal area morphodynamic modelling system.A dominant mechanism for dissipating wave energy over a submerged breakwater is depth-limited wave breaking. Available models for energy dissipation due to wave breaking are developed for beaches (gentle slopes) and require further modifications to model wave breaking over submerged breakwaters.In this paper, wave breaking is split into two parts, namely: 1) depth-limited breaking modelled using Battjes and Janssen's (1978) theory [Battjes, J.A. and Jannsen, J.P.F.M. (1978). Energy loss and setup due to breaking of random waves. Proceedings of the 16th Int. Conf. Coast. Eng., Hamburg, Germany, pp. 569-587.] and 2) steepness limited breaking modelled using an integrated form of the Hasselmann's whitecapping dissipation term, commonly used in fully spectral wind–wave models. The parameter γ2, governing the maximum wave height at incipient breaking (Hmax = γ2d) is used as calibration factor to tune numerical model results to selected laboratory measurements. It is found that γ2 varies mainly with the relative submergence depth (ratio of submergence depth at breakwater crest to significant wave height), and a simple relationship is proposed. It is shown that the transmission coefficients obtained using this approach compare favourably with those calculated using published empirical expressions.  相似文献   

14.
In the Boussinesq approximation, we study baroclinic topographic waves trapped by the flat meridional slope. The existence of these waves is explained by stratification, inclined bottom, and Earth's rotation. We deduce the evolutionary equation for the square of the envelope of a narrow-band wave packet of trapped waves. In the second order of smallness relative to the wave amplitude, we find the mean fields of velocity and density induced by the packet. It is shown that, in the limiting case of weakly nonlinear plane waves, the induced current is zonal. In the Northern hemisphere, depending on the slope of the bottom γ1, the sign of the phase velocity σ/k (k is the zonal wave number) is either always positive (for γ11cr) or always negative (for γ11cr). If we neglect the vertical component of the Coriolis acceleration, then γ1cr=0. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

15.
Green–Naghdi (GN) theory is a fully nonlinear wave theory which has been used with success to simulate nonlinear water waves. In previous applications of GN theory to water wave problems the ocean bottom was assumed to be time invariant. In this work no such restriction is made and GN theory is used to simulate tsunami caused by bottom fluctuation. As first test cases we simulate two-dimensional nonlinear surface waves generated by positive bottom movements. The results in the generation region for three different seabed movements compare well against earlier experimental data. The results in the downstream region for impulsive seabed movements show some discrepancies in wave phase and amplitude compared with earlier experimental values. It is suspected that the viscous effects may have played a role. The GN theory is then used to study three-dimensional near-field tsunami amplitudes caused by submarine landslides and slumps spreading in two orthogonal directions. The GN results agree with previous linear solution very well when the ratio of the velocities is v1/v2=1.0. But GN theory give more believable results for the case of vT/v=0.1 and v1/v2=0.1.  相似文献   

16.
Recently, Niu and Yu (2011) presented an analytical solution of the long wave refraction by a submerged circular hump. The geometry of the hump was assumed to be axi-symmetric and the water depth over the hump region was described by a positive constant plus a power function of the radial distance with an arbitrary value of the power exponent, i.e., h = h1 + βrs, where h1 is the water depth at the crest of the hump. Their general hump is an extension of the paraboloidal hump (i.e., s = 2) studied by Zhang and Zhu (1994) and Zhu and Harun (2009). Because of this extension in the topography of the hump, the problem to seek a general analytical solution to the long-wave equation becomes much more complicated and the solution technique need to be more skillful, especially for the case with the exponent s being a rational, see Eq. (17) in Niu and Yu (2011).  相似文献   

17.
The wavelet-based bicoherence, which is a new and powerful tool in the analysis of nonlinear phase coupling, is used to study the nonlinear wave–wave interactions of breaking and non-breaking gravity waves propagating over a sill. Two cases of mechanically generated random waves based on Jonswap spectra are used for this purpose. Values of relative depth, kph (kp is the wave number of the spectral peak and h is the water depth) for this study range between 0.38 and 1.22. The variations of wavelet-based total bicoherence for the test cases indicate that the degree of quadratic phase coupling increases in the shoaling region consistent with a wave profile that is pitched shoreward, relative to a vertical axis as seen in the experiments, but decreases in the de-shoaling region. For the non-breaking case, the degree of quadratic phase coupling continues to increase until waves reach the top of the sill. Breaking waves, however, achieve their highest level of quadratic phase coupling immediately before incipient breaking and the degree of phase coupling decreases sharply following breaking. In addition the wavelet-based bicoherence spectra provide evidence of the harmonics' growth which is reflected in the energy spectra. The bicoherence spectra also show that quadratic phase coupling between modes within the peak frequency as well as between modes of the peak frequency and its higher harmonics are dominant in the shoaling region, even though there are relatively high levels of quadratic phase coupling occurring between other frequencies. Furthermore, using the temporal resolution property of the wavelet-based bicoherence, we find that the quadratic wave interactions occur more readily during segments of time with large change of wave amplitude, rather than those segments having large wave amplitudes, but small gradients in amplitude.  相似文献   

18.
The wave crest height qualification checks are required during the wave calibration before the model test in wave basin. However, the reliable criteria of nonlinear wave crest probability distribution in 3-h duration (full-scale) has not been well established yet. We investigate wave crest-height statistics of long-crested nonlinear wave fields using high-order spectral (HOS) method, which can take the effects of both second-order bound waves and third-order free waves into account. The energy dissipation effects due to wave breaking were included by employing an eddy viscosity model. Sensitivity analyses to the wave breaking onset criterion have been performed. Validation is provided by comparing the obtained numerical results with the available calibration test data. Based on extensive and direct numerical simulations, semi-empirical single realization distributions for wave calibration have been developed through 3-parameter Weibull fitting and systematic regression analyses. Particular attention has been paid to the tail of upper bound of wave crest distributions. The effects of wave steepness and water depth on the maximum wave crest height in 3-h duration have been examined. It is found that with the increase of wave steepness, the extreme wave crest height increases until it reaches a critical value. In addition, for the scale water depth kph < 1.36, the maximum crest height decreases as the water depth increases, while in the opposite case the maximum crest height increases as the water depth increases. Moreover, it is confirmed that that the fourth-order nonlinearity does not have significant effects on the distribution of the wave crest height.  相似文献   

19.
The hydrodynamic efficiency of the vertical porous structures is investigated under regular waves by use of physical models. The hydrodynamic efficiency of the breakwater is presented in terms of the wave transmission (kt ), reflection (kr) and energy dissipation (kd ) coefficients. Different wave and structural parameters affecting the breakwater efficiency are tested. It is found that, the transmission coefficient (kt ) decreases with the increase of the relative water depth (h/L), the wave steepness (Hi/L), the relative breakwater widths (B/L, B/h), the relative breakwater height (D/h), and the breakwater porosity (n). The reflection coefficient (kr) takes the opposite trend of kt when D/h=1.25 and it decreases with the increasing h/L, Hi/L and B/L when D/h 1.0. The dissipation coefficient (kd) increases with the increasing h/L, Hi/L and B/L when D/h 1.0 and it decreases when D/h=1.25. In which, it is possible to achieve values of kt smaller than 0.3, krlarger than 0.5, and kd larger than 0.6 when D/h=1.25, B/h=0.6, h/L 0.22, B/L 0.13, and Hi/L 0.04. Empirical equations are developed for the estimation of the transmission and reflection coefficients. The results of these equations are compared with other experimental and theoretical results and a reasonable agreement is obtained.  相似文献   

20.
《Coastal Engineering》2002,44(3):205-229
In this paper, we derive and test simplified higher-order Boussinesq equations, i.e., higher-order Boussinesq equations which only show lower-order terms. Simplifications are performed linearly for flat beds and slopes of O(∇h). With proper coefficient choice, dispersion and shoaling properties are found to be good, while interior fluid velocities show relatively greater error at high wavenumbers.The resulting sets of equations are found to be variants of already-existing equations, which may be easily modified to improve performance. The new equations have dispersion identical to previous results but significantly improved shoaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号