首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Engineering geological properties and support design of a planned diversion tunnel at Guledar dam site, which was located at the North of Ankara, Turkey were studied in this article. The main purpose of the construction of the planned tunnel is to regulate, drainage and to provide water for irrigation purposes. The diversion tunnel runs mainly through formations of limestone, sandstone and diabase. Rock masses at the site were characterized using Rock Mass Rating (RMR), Rock Mass Quality (Q), Rock Mass Index (RMi) and Geological Strength Index (GSI). RMR, Q, RMi and GSI were determined by using field data and mechanical properties of intact rock samples, measured in the laboratory. Support requirements for the planned diversion tunnel were determined accordingly in terms of the rock mass classification systems. Recommended support systems by empirical methods were also analyzed using 2D Finite Element method. Calculated parameters based on empirical methods were used as input parameters in the finite element models. The results from both methods were compared with each other. This comparison suggests that more reliable support design could be achieved by using the finite element method together with the empirical methods.  相似文献   

2.
M. Rasouli   《Engineering Geology》2009,108(3-4):208-224
In this paper a detailed engineering geological assessment of rock masses and support design studies at Garmi Chay dam site, has been carried out. This project is located in the northwest of Iran and will be used for flow control and water storage. The diversion tunnel of the dam has a diameter of 5.5 m and a length of 420 m and will be driven in slightly to highly weathered micaschist and trachy andesite rock units. The geological studies include field and laboratory investigations that based on the results; for more exact investigation, tunnel alignment was divided into three geotechnical zones. These zones consist mainly of highly weathered gray micaschists, dark red trachy andesites and slightly weathered gray micaschists, respectively. Then, for every zone, support capacity of rock masses was evaluated by means of empirical and numerical methods. The rock mass classification systems (RMR, Q, GSI, RSR, SRC and RMi), the convergence–confinement method and a 2D finite element computer software, Phase2 were used for empirical and numerical method, respectively. According to the results acquired from these methods some stability problems were expected in the tunnel especially in highly weathered micaschist zone, so that in practice two big collapses occurred. Because of high weathering, low constants of rock masses and their soil-like behavior, the stability analysis by analytical method does not give illogical results in lightly weathered micaschist zone. The support system, suggested by empirical method, was applied and its performance was evaluated by means of numerical modeling. After installation the support suggested by Phase2 program, the thickness of plastic zone and deformations around the tunnel decreased significantly. Consequently the agreement of these methods with each other was resulted and using combination of them was recommended for more reliable support design.  相似文献   

3.
This paper describes the results of the engineering geological investigations and rock mechanics studies carried out at the proposed Uru Dam site. Analyses were carried out in terms of rock mass classifications for diversion tunnel, kinematic analysis of excavation slopes, permeability of the dam foundation and determination of rock mass strength parameters.Uru Dam is a rock-filled dam with upstream concrete slab. The dam will be built on the Suveri River in the central part of Turkey. The foundation rocks are volcanic rocks, which consist of andesite, basalt and tuff of Neogene Age. Studies were carried out both at the field and the laboratory. Field studies include engineering geological mapping, intensive discontinuity surveying, core drilling, pressurized water tests and sampling for laboratory testing.Uniaxial, triaxial and tensile strength tests were performed and deformation parameters, unit weight and porosity were determined on the intact rock specimens in the laboratory. Rock mass strength and modulus of elasticity of rock mass are determined using the Hoek–Brown empirical strength criterion. Rock mass classifications have been performed according to RMR and Q systems for the diversion tunnel.Engineering geological assessment of the proposed dam and reservoir area indicated that there will be no foundation stability problems. Detailed geotechnical investigations are required for the final design of the dam.  相似文献   

4.
This paper presents the engineering geological properties and support design of a planned diversion tunnel at the Boztepe dam site that contains units of basalt and tuffites. Empirical, theoretical and numerical approaches were used and compared in this study focusing on tunnel design safety. Rock masses at the site were characterized using three empirical methods, namely rock mass rating (RMR), rock mass quality (Q) and geological strength index (GSI). The RMR, Q and GSI ratings were determined by using field data and the mechanical properties of intact rock samples were evaluated in the laboratory. Support requirements were proposed accordingly in terms of different rock mass classification systems. The convergence–confinement method was used as the theoretical approach. Support systems were also analyzed using a commercial software based on the finite element method (FEM). The parameters calculated by empirical methods were used as input parameters for the FEM analysis. The results from the two methods were compared with each other. This comparison suggests that a more reliable and safe design could be achieved by using a combination of empirical, analytical and numerical approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号