首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method of simultaneously regularizing the three types of binary collisions in the planar problem of three bodies is developed: The coordinates are transformed by means of certain fourth degree polynomials, and a new independent variable is introduced, too. The proposed transformation is in each binary collision locally equivalent to Levi-Civita's transformation, whereas the singularity corresponding to a triple collision is mapped into infinity. The transformed Hamiltonian is a polynomial of degree 12 in the regularized variables.Presented before the Division of Dynamical Astronomy at the 133rd meeting of the American Astronomical Society, Tampa, Florida, December 6–9, 1970.Department of Aerospace Engineering and Engineering Mechanics.  相似文献   

2.
The question of whether or not there is a transfer of energy between the in-plane motion and out-of-plane motion in the neighborhood ofL 4 in the restricted problem of three bodies is investigated in this paper. The in-plane motion is assumed to be finite and the out-of-plane motion to be infinitesimal. The equation governing the out-of-plane motion becomes one with time varying coefficients. The stability of this equation is then investigated using Lie Series.Presented as a paper AAS No. 70-313, at the AAS/AIAA Astrodynamics Specialists Conference 1971 at Fort Lauderdale Fla., U.S.A.  相似文献   

3.
Letr 1,r 2,r 3 be arbitrary coordinates of the non-zero interacting mass-pointsm 1,m 2,m 3 and define the distancesR 1=|r 1?r 3|,R 2=|r 2?r 3|,R=|r 1?r 2|. An eight-dimensional regularization of the general three-body problem is given which is based on Kustaanheimo-Stiefel regularization of a single binary and possesses the properties:
  1. The equations of motion are regular for the two-body collisionsR 1→0 orR 2→0.
  2. Provided thatR?R 1 orR?R 2, the equations of motion are numerically well behaved for close triple encounters.
Although the requirementR? min (R 1,R 2) may involve occasional transformations to physical variables in order to re-label the particles, all integrations are performed in regularized variables. Numerical comparisons with the standard Kustaanheimo-Stiefel regularization show that the new method gives improved accuracy per integration step at no extra computing time for a variety of examples. In addition, time reversal tests indicate that critical triple encounters may now be studied with confidence. The Hamiltonian formulation has been generalized to include the case of perturbed three-body motions and it is anticipated that this procedure will lead to further improvements ofN-body calculations.  相似文献   

4.
A regularization method for integrating the equations of motion of small N-body systems is discussed. We select a chain of interparticle vectors in such a way that the critical interactions requiring regularization are included in the chain. The equations of motion for the chain vectors are subsequently regularized using the KS-variables and a time transformation. The method has been formulated for any number of bodies, but the most important application appears to be in the four-body problem which is therefore discussed in detail.  相似文献   

5.
The resonant structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is studied, both for a circular and an elliptic orbit of Jupiter. Three typical resonances are studied, the 2 : 1, 3 : 1 and 4 : 1 mean motion resonance of the asteroid with Jupiter. The structure of the phase space is topologically different in these cases. These are typical for all other resonances in the asteroid problem. In each case we start with the unperturbed two-body system Sun-asteroid and we study the continuation of the periodic orbits when the perturbation due to a circular orbit of Jupiter is introduced. Families of periodic orbits of the first and of the second kind are presented. The structure of the phase space on a surface of section is also given. Next, we study the families of periodic orbits of the asteroid in the elliptic restricted problem with the eccentricity of Jupiter as a parameter. These orbits bifurcate from the families of the circular problem. Finally, we compare the above families of periodic orbits with the corresponding families of fixed points of the averaged problem. Different averaged Hamiltonians are considered in each resonance and the range of validity of each model is discussed.  相似文献   

6.
In the three body problem, an upper bound is found for the angle defined by the invariable plane and the position vector of an escaping particle.This work was partially supported by NSF GP-32116.  相似文献   

7.
The author's aim is to achieve global regularization in the Magnetic-Binary problem by suitably transforming the state-time space of the system. The functions which perform the change of the physical time and the geometrical figures of the system, are connected by a special relation leaving the form of the equations of motion invariant. Additionally, a proposition for generalization of the process is discussed in an aspect as well, of how much such a regularization is profitable.  相似文献   

8.
Using a modified leapfrog method as a basic mapping, we produce a new numerical integrator for the stellar dynamical few-body problem. We do not use coordinate transformation and the differential equations are not regularized, but the leapfrog algorithm gives regular results even for collision orbits. For this reason, application of extrapolation methods gives high precision. We compare the new integrator with several others and find it promising. Especially interesting is its efficiency for some potentials that differ from the Newtonian one at small distances.  相似文献   

9.
The singularities in a Magnetic-Binary system are regularized separately by changing both the coordinates and the time. It is shown why, in this problem it is more efficient to relate the geometric transformation to the rescaling of time.  相似文献   

10.
11.
We present a study of the Lagrangian triangular equilibria in the planar restricted three body problem where the primaries are oblate homogeneous spheroids steadily rotating around their axis of symmetry and whose equatorial planes coincide throughout their motion.  相似文献   

12.
13.
A limiting case of the problem of three bodies (m 0,m 1,m 2) is considered. The distance between the bodiesm 0 andm 1 is assumed to be much less than that between their barycenter and the bodym 2 so that one may use Hill's approximation for the potential of interaction between the bodiesm 1 andm 2. In the absence of resonant relations the potential, double-averaged by the mean longitudes ofm 1 andm 2, describes the secular evolution of the orbits in the first approximation of the perturbation theory.As Harrington has shown, this problem is integrable. In the present paper a qualitative investigation of the evolution of the orbits and comparison with the analogous case in the restricted problem are carried out.The set of initial data is found, for which a collision between the bodiesm 0 andm 1 takes place.The region of the parameters of the problem is determined, for which plane retrograde motion is unstable.In a special example the results of approximate analysis are compared with those of numerical integration of the exact equations of the three body problem.
m 0,m 1,m 2. , m 0 m 1. m 2, m 1 m 2 m 1 m 2 . , . . , m 0 m 1. , . .
  相似文献   

14.
In this paper the existence of collinear as well as equilateral libration points for the generalised elliptic restricted three body problem has been studied distinct from Kondurar and Shinkarik (1972) where a study has been made for the generalised circular restricted three body problem. Here the coordinates of the libration points have been found to be functions of timet.  相似文献   

15.
We study homoclinic transport to Lyapunov orbits around a collinear libration point in the planar restricted three body problem. A method to compute homoclinic orbits is first described. Then we introduce the scattering map for this problem (defined on a suitable normally hyperbolic invariant manifold) and we show how to compute it using the information already obtained for the homoclinic orbits. An example application to Astrodynamics is also proposed.  相似文献   

16.
A new regularizing transformation for the three-dimensional restricted three-body problem is constructed. It is explicitly derived and is equivalent to a simple rational map. Geometrically it is equivalent to a rotation of the 3-sphere. Unlike the KS map it is dimension preserving and is valid inn dimensions. This regularizing map is applied to the restricted problem in order to prove the existence of a family of periodic orbits which continue from a family of collision orbits.  相似文献   

17.
18.
The instability criterion of a nonlinear mechanical system neutral to the first approximation is formulated for the internal resonance case which is characterized by the existence of commensurabilities between the frequencies of the system.The criterion derived is used for determining the regions of instability of Laplace's constant triangular solutions of the unrestricted three-body problem. It is shown that in the region where necessary Routh-Joukovsky's stability conditions are satisfied there may exist eight resonanceunstable sets of the masses of the three bodies. These sets may be mechanically interpreted as follows: in the case of resonance instability the barycentre of the equilateral triangle formed by the three bodies is located on one of the eight circles constructed in the geometrical centre of this triangle.  相似文献   

19.
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, \(2 T=k\pi +\int _\Omega g\) where k is an integer, \(\Omega \) is the region enclosed by the periodic orbit and \(g:{\mathbb {R}}^2\rightarrow {\mathbb {R}}\) is a function that only depends on the constant C known as the Jacobian constant; it does not depend on \(\Omega \). This theorem has a Keplerian flavor in the sense that it relates the period with the space “swept” by the orbit. As an application we prove that there is a neighborhood around \(L_4\) such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for \(L_5\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号