首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most productive and well‐sampled dense collection areas for meteorites on Earth is the “Franconia strewn field” in Mohave County, Arizona, which since 2002 has yielded hundreds of meteorites in an ellipsoidal area approximately 5 × 16 km across. Based on petrographic, mineral‐chemical, and terrestrial age data, we conclude that among 14 meteorites examined, there are at least 6 and possibly 8 distinct meteorites represented, which fell over a period of approximately 0–20 kyr ago. These include equilibrated H‐chondrites such as Franconia (H5) and Buck Mountains (BM) 001 (H6); H3–6 breccias such as Buck Mountains Wash and BM 004; and L6 chondrites such as BM 002 and BM 003 (which may be paired), Palo Verde Mine, and BM 005. To confidently pair such meteorites often requires thorough petrographic examination, mineral‐chemical analyses, and terrestrial ages. We estimate that 50 ± 10% of the larger specimens in this area are paired, yielding a relatively high value of approximately 2.3–2.9 distinct meteorites km?2. The meteorite flux estimated for Franconia area is higher than the flux inferred from contemporary fireball data for larger masses. We suggest that one large H3–6 meteoroid fell in the area, most likely that of Buck Mountains Wash approximately 4 kyr ago, which produced an elliptical strewn field with masses generally increasing toward one end, and which raised the meteorite productivity in the recovery area.  相似文献   

2.
The mechanisms of “Noisar” phenomenon in AM Herculis-type stars are discussed. In an accretion column above the surface of the magnetized degenerate star the instability of some types may be excited, such as axi-symmetrical quasi-periodical penetration of the low-density “bulks” from the column axis to the outer parts; “boiling” with “bulks” moving inside or outside the column; “tornado” with low-density region rapidly rotating around the column axis; “switchings” of the accretion from one half of the “polar cap” to another and vice versa. The oscillations of different plasma clots (“spaghetti”) may interfer causing flux changes as well. Such “Noisar” oscillations appear in different regions of the accretion column (at the upper shock and near the column base, respectively), so hard and soft X-ray fluxes might not have correlation in their variability. The observations are in qualitative agreement with the models.  相似文献   

3.
Brownell is a new, moderately shocked, L6 chondrite from Ness County, Kansas that is petrologically distinct from the other L6 chondrites from Ness County. These latter meteorites, Wellmanville, Franklinville and Ness County (1894), are very similar in their olivine and low-Ca pyroxene compositional distributions, kamacite Co contents, modal abundances of metallic Fe, Ni and presence of martensitic metallic Fe, Ni (∼ 14 wt. % Ni). However, their silicates indicate that they have been shocked to different extents. We suggest that all three probably represent a single, heterogeneously-shocked, L6 fragmental breccia that fell over a large area, > 30 km in length.  相似文献   

4.
As two very controversial surveys of the rock formation “Teufelstein” exist in literature (H. Haupt versus H.M. Maitzen as well as W. Schlosser), a photographic documentation of solar and lunar rising and setting points throughout a whole year as well as a remeasurement with a solar compass was carried out on the spot. The result is that the formation is not an accurate solar marker but could only have served as a warning peg for the summer solstice setting point (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Abstract— We explore the orbital dynamics of Earth‐crossing objects with the intent to understand the time scales under which an “orbital stream” of material could produce time‐correlated meteorite falls. These “meteoroid streams” have been suggested to be associated with three well‐known meteorite‐dropping fireballs (Innisfree, Peekskill, and P?íbram). We have performed two different analyses of the statistical significance of the “orbital similarity,” in particular calculating how often orbits of the same level of similarity would come from a random sample. Secondly, we have performed extremely detailed numerical integrations related to these three cases, and we find that if they were streams of objects in similar orbits, then they would become “decoherent” (in the sense that the day‐of‐fall of meteorites of these streams become almost random) on time scales of 104–105 yr. Thus, an extremely recent breakup would be required, much more recent that the cosmic ray exposure ages of the recovered falls in each case. We conclude that orbital destruction is too efficient to allow the existence of long‐lived meteoroid streams and that the statistical evidence for such streams is insufficient; random fall patterns show comparable levels of clustering.  相似文献   

6.
The reconstruction of the solar activity during some years of the 18th century is poorly known because there are scarce sunspot observations. The aim of this short contribution is to present a “lost” sunspot observation realized by the Portuguese scientist Sanches Dorta during his observation of the solar eclipse of 1785 from Rio de Janeiro (Brazil). This record was not included in the database compiled by Hoyt and Schatten (1998). We present new estimations of the solar activity during 1785. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Abstract— In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m‐wide sag pond, surrounded by a saddle‐shaped rim from the Sirente plain (Abruzzi, Italy), is the first‐discovered meteoritic crater of Italy. Sub‐circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present‐day soils from these sag ponds and from the Sirente sags (both the main “crater” and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the “Sirente crater.” For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the “Sirente crater,” together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of “transumanza” (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social‐economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.  相似文献   

8.
We have earlier investigated the surface structures of a late‐type, single, giant FK Com for the years 1994–1998 using Doppler imaging. These surface temperature maps revealed long‐lived active regions at high latitudes. Long‐term photometric observations also show that these active regions tend to occur at two permanent active longitudes which are 180 degrees apart from each other, and that the activity switches the longitude with an average period of about 3 years (the “flip‐flop” phenomenon). In this work we present new Doppler maps of FK Com obtained 1998‐2003 and light‐curve maps obtained 2002–2003. These new maps are investigated together with the earlier temperature maps and light‐curve maps, with an aim of further studying the active longitudes, “flip‐flop” phenomenon and surface differential rotation on FK Com. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Abstract— Among the three large camera networks carrying out fireball observations through the seventies and eighties, the “European Fireball Network” is the last one still in operation. The network today consists of more than 34 all-sky and fish-eye cameras deployed with ~100 km spacing and covering an area of ~106 km2, in the Czech and Slovak Republics, Germany, as well as parts of Belgium, Switzerland, and Austria. Network operation results in ~10 000 image exposures per year, which represent on average 1200 h of clear sky observations—as imaging periods are restricted due to daylight, moonlight, and clouds. The cameras detect currently large meteors at a rate of ~50 per year; this is in good agreement with the encounter rates determined in previous fireball studies. From sightings of “meteorite candidates” (fireballs that may have deposited meteorites) and meteorite recoveries in the network area, we estimate that 15% of the influx of meteoritic matter is currently observed by the cameras, whereas <1% is recovered on the ground. Issues to be addressed by future fireball observations include the study of very large meteoroids (>1000 kg) for which statistics are currently very poor and an examination of their relationship to NEOs (near-Earth objects) identified by current NEO search programs.  相似文献   

10.
Grove Mountains (GRV) 020090 is a “lherzolitic” shergottite found in the Grove Mountains, Antarctica. It exhibits two distinct textures: poikilitic and nonpoikilitic. In poikilitic areas, large pyroxene oikocrysts enclose subhedral olivine and chromite chadacrysts. Pyroxene oikocrysts are zoned from pigeonite cores to augite rims. In nonpoikilitic areas, olivine, pyroxene, and interstitial maskelynite occur as major phases, and minor phases include chromite and merrillite. Compared with typical “lherzolitic” shergottites, GRV 020090 contains a distinctly higher abundance of maskelynite (19 vol%). Olivine and pyroxene are more ferroan (Fa28–40, En57–72Fs24–31Wo4–14 and En46–53Fs17–21Wo26–35), and maskelynite is more alkali‐rich (Ab43–65Or2–7). The major phases, whole‐rock (estimated) and fusion crust of GRV 020090, are relatively enriched in light rare earth elements (LREE), similar to those of the geochemically enriched basaltic shergottites, but distinct from those of LREE‐depleted “lherzolitic” shergottites. Combined with a high oxygen fugacity of log fO2 = QFM ? 1.41 ± 0.04 (relative to the quartz‐fayalite‐magnetite buffer), it is clear that GRV 020090 sampled from an oxidized and enriched mantle reservoir similar to those of other enriched shergottites. The calculated REE abundances and patterns of the melts in equilibrium with the cores of major phases are parallel to but higher than that of the whole rock, suggesting that GRV 020090 originated from a single parent magma and experienced progressive fractional crystallization in a closed system. The crystallization age recorded by baddeleyite is 192 ± 10 (2σ) Ma, consistent with the young internal isochron ages of enriched shergottites. Baddeleyite dating results further demonstrated that the young ages, rather than ancient ages (>4 Ga), appear to represent the crystallization of Martian surface lava flow. GRV 020090 shares many similarities with Roberts Massif (RBT) 04261/2, the first enriched “lherzolitic” shergottite. Detailed comparisons suggest that these two rocks are petrologically and geochemically closely related, and probably launch paired.  相似文献   

11.
The motion of one point mass of the classical mechanics is treated by means of the relativistic spinor regularization (KUSTAANHEIMO 1975). Most general spinor equations of motion (2.9)‒(2.10)and the differential equations(3.16)‒(3.25)for the “possible integrals” (3.2)‒(3.11)of these quations of motion are deduced. If the force is a superposition of a conservative central force and of another force perpendicular to radius vector and velocity (Chapter 4, Case D), then the theory yields scalar and spinor integrals (4.7), (4.10)‒(4.12), (4.14)‒(4.15), (4.17), (4.28) that enable a parametric representation of the orbit by quadratures, as soon as one solution of a RICCATI differential equation (4.33) has been found.  相似文献   

12.
During an observational program of asteroids at the observatory of Haute Provence (France) an asteroid of 17th magnitude was discovered on 22nd January 1988 (Elst 1988). Further observations at the European Southern Observatory (ESO) and a preliminary determination of an orbit revealed that it belongs to the “Hungaria” family.  相似文献   

13.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

14.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The Grier(b), New Mexico meteorite, a single mass of 929.4 grams, was found in 1969. This brecciated chondrite can be classified as an L-group from the bulk chemical analysis, ~ 8 wt % metal with an estimated total iron content of 25 wt %, and the constant olivine (Fa25.5) and orthopyroxene (Fs23) compositions. The main portion of the meteorite fits the criteria for an L5 (grey to intermediate hypersthene) chondrite. A conspicuous, large (several cm3) dense fragment, texturally an L6–7 chondrite, contains practically no metal or chondrules. However, there is little variation in the bulk silicate and individual phase compositions between the fragment and the matrix. In spite of this, it seems unlikely that the fragment was created in situ because metal and sulfide are not found in the fragment-matrix contact zone; thus the formation of olivines and pyroxenes in both parts, as well as the “draining” of metal from the fragment, occurred prior to accretion with little, if any, subsequent thermal metamorphism.  相似文献   

16.
The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic “rapid” process. In a careful and homogeneous analysis of the “First Stars” sample (eighty per cent of the stars have a metallicity [Fe/H] ≃ –3.1 ± 0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the europium‐rich stars (generally called “r‐rich”) are also Ba‐rich. The very large variation of [Ba/Fe] (existence of “r‐poor” and “r‐rich” stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba] < –0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early “additional” process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect the r‐rich matter (which already contains an important quantity of Sr) but would change significantly the composition of the r‐poor matter. The abundances found in the CEMP‐r+s stars reflect the transfer of heavy elements from a defunct AGB companion. But the abundances of the heavy elements in CEMP‐no stars present the same characteristics as the the abundances in the EMP stars. Direct stellar ages may be found from radioactive elements, the precision is limited by the precision in the measurements of abundances from faint lines in faint stars, and the uncertainty in the initial abundances of the radioactive elements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We present the results of a search for UV and optical counterparts of the SSS population in M 31. We find that out of the 56 sources we included in our search, 16 are associated with regions of ongoing or recent star formation. We discuss two particularly interesting sources that are identified optically as early type stars, one of which displayed long term X‐ray evolution similar to that observed in classical novae. We discuss the physical origin of supersoft X‐rays in these and the other SSS in young regions, and their possible link to the so‐called “prompt” component of the Type Ia supernova population (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The Flynn Creek impact structure is an approximately 3.8 km diameter, marine‐target impact structure, which is located in north central Tennessee, USA. The target stratigraphy consists of several hundreds of meters of Ordovician carbonate strata, specifically Knox Group through Catheys‐Leipers Formation. Like other, similarly sized marine‐target impact craters, Flynn Creek's crater moat‐filling deposits include, in stratigraphic order, gravity‐driven slump material, aqueous resurge deposits, and secular (postimpact) aqueous settling deposits. In the present study, we show that Flynn Creek also possesses previously undescribed erosional resurge gullies and an annular, sloping surface that comprises an outer crater rim surrounding an inner, nested bowl‐shaped crater, thus forming a concentric crater structure. Considering this morphology, the Flynn Creek impact structure has a crater shape that has been referred to at other craters as an “inverted sombrero.” In this paper, we describe the annular rim and the inner crater at Flynn Creek using geographic information system technology. We relate these geomorphic features to the marine environment of crater formation, and compare the Flynn Creek impact structure with other marine‐target impact structures having similar features.  相似文献   

19.
Abstract— The microstructure and composition of the matrix of one carbonaceous inclusion (K1) in the Krymka LL3.1 chondrite were studied using transmission electron microscopy (TEM). K1 has previously shown an enigmatic nature and similarities with volatile‐rich, fine‐grained, dark inclusions of Krymka called “mysterite.” In the present study, four minerals were identified by TEM. Olivine, pyroxene, and pyrrhotite typically have grain sizes of one micrometer; graphite occurs as flakes of a similar size. Olivine shows a moderately high dislocation density most probably caused by shock. Pyroxene shows coexisting ortho‐ and clinoenstatite lamellae that probably originated from shear stress after a shock event or from the rapid cooling of the protoenstatite stability field. However, we demonstrate that in this case, a shock trigger is more likely. Pyrrhotite in the studied sample occurs as a 4C monoclinic superstructure. The graphite flakes in the fragment are well crystallized, as can be seen by discrete spots in the diffraction pattern. In graphite, the degree of crystallization increases with the metamorphic grade. Based on the microstructure of this mineral we conclude that after a first moderate shock event, the residual temperature between 300 °C and 500 °C led to thermal metamorphism. A second shock event, possibly at excavation from the parent body, is responsible for the shock features observed in olivine, pyroxene, and graphite.  相似文献   

20.
Abstract— A model for an impact ejecta landform peculiar to Saturn's moon Titan is presented. Expansion of the ejecta plume from moderate‐sized craters is constrained by Titan's thick atmosphere. Much of the plume is collimated along the incoming bolide's trajectory, as was observed for plumes from impacts on Jupiter of P/Shoemaker‐Levy‐9, but is retained as a linear, diagonal ejecta cloud, unlike on Venus where the plume “blows out.” On Titan, the blowout is suppressed because the vertically‐extended atmosphere requires a long wake to reach the vacuum of space, and the modest impact velocities mean plume expansion along the wake is slow enough to allow the wake to close off. Beyond the immediate ejecta blanket around the crater, distal ejecta is released into the atmosphere from an oblique line source: this material is winnowed by the zonal wind field to form streaks, with coarse radar‐bright particles transported less far than fine radar‐dark material. Thus, the ejecta form two distinct streaks faintly reminiscent of dual comet tails, a sharply W‐E radar‐dark one, and a less swept and sometimes comma‐shaped radar‐bright one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号