首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 868 毫秒
1.
切削式隧道洞门结构处于复杂的三维受力状态,需要采用三维数值计算才能得到相对正确的结果,为对计算模式进行简化,对Ⅴ级围岩条件下,1: 1.5坡度的正削式隧道洞门结构进行了尝试。首先对明挖法施工的洞门模型试验和三维数值计算所得到的拱顶围岩压力进行了验证,接着从研究围岩压力分布和结构受力特性着手,得到了结构横、纵向内力的控制截面,拱顶荷载q与 的关系,绘制了横向的压力分布图式,并给出了纵向荷载的计算方法,从而将三维地层结构数值计算模式简化成横向封闭环和纵向弹性地基的平面荷载-结构计算模式,分别计算横、纵向内力。  相似文献   

2.
《地下水》2017,(3)
崩塌是库尔勒市铁门关水电厂的主要地质灾害。根据危岩体失稳破坏的模式,研究区主要发育为滑移式破坏。库尔勒市铁门关水电厂内岩质崩塌破坏的主要荷载有危岩体自重、天然状态的裂隙水压力、暴雨状态的裂隙水压力和地震力,可以构成4种荷载组合。据此,运用极限平衡理论及岩体结构理论建立了岩质崩塌破坏的计算模型,并对滑移式破坏模式的稳定性进行了计算,为岩质崩塌灾害的治理提供了理论依据。  相似文献   

3.
深基坑双排桩支护结构上的变形和土压力研究   总被引:7,自引:0,他引:7  
聂庆科  胡建敏  吴刚 《岩土力学》2008,29(11):3089-3094
根据某大型深基坑工程的实测资料,对双排桩支护结构上的截面弯矩、变形和土压力分布特征进行了研究,并对基坑开挖的空间效应、冠梁刚度对土压力的影响、支护结构变形与土压力分布的关系、双排桩支护结构与土的相互作用机制等进行分析。研究表明,深基坑双排桩支护结构上的土压力分布是十分复杂的,用传统的土压力计算方法估算双排桩支护结构上的土压力存在较大偏差。其研究结果为双排桩支护结构上土压力设计计算模式的建立提供了依据。  相似文献   

4.
以扬州瘦西湖隧道为工程依托,对超大直径盾构隧道管片荷载、结构内力等进行长期现场监测,分析超大直径浅埋盾构隧道土压力、管片钢筋应变的变化规律。采用上覆土柱法、太沙基松弛土压力法计算管片土压力理论计算值,并与现场实测结果对比,分析不同土压力计算方法在不同埋深条件下的适用范围。结果表明,盾构纠偏对隧道管片荷载大小、分布形式影响较大,且其影响一致持续至稳定期;盾构隧道施工结束后,作用在盾构管片上的土压力逐渐减小并趋于稳定;管片钢筋应变同土压力变化趋势基本一致,但进入稳定期时间略滞后于土压力,土压力进入稳定期后实测土压力值约为理论计算值的48%~60%;松弛土压力法计算的土压力值较上覆土柱法计算值和实测结果更为接近。研究成果可为盾构隧道管片设计荷载取值提供指导。  相似文献   

5.
大断面深埋高水压地铁盾构隧道周边土压力作用模式评价   总被引:1,自引:0,他引:1  
李雪  周顺华  宫全美  陈长江 《岩土力学》2015,36(5):1415-1420
以南京某大直径地铁盾构隧道为背景,对盾构管片衬砌所受荷载及结构内力进行现场测试,分析了深埋高水压粉细砂地层中盾构隧道管片土压力大小及分布特征。采用3种不同竖向荷载组合(即有效上覆土压力+水压力,太沙基松动土压力+水压力,只有水压力)计算管片内力并与实测内力进行比较,评价了作用在盾构隧道管片上的土压力模式。结果表明:(1)作用在盾构隧道衬砌上的水压力大小基本等于静止水压力;(2)盾构隧道隧顶实测土压力约为太沙基松动土压力的80%,实测隧顶土压力更接近于太沙基松动土压力,隧道上方存在土拱;(3)现场实测管片弯矩较3种荷载作用下计算弯矩小,而实测管片轴力约为理论计算轴力的2倍。此外,分析了水平地基抗力系数对隧道管片内力的影响。研究成果可为大直径深埋盾构隧道设计提供参考。  相似文献   

6.
《地下水》2016,(4)
崩塌是新疆农一师电力公司煤矿的主要地质灾害,是地层组合、地貌特征、水动力特性及地震等因素耦合的结果。根据危岩体失稳破坏的模式,可将危岩破坏模式分为滑移式破坏、倾倒式破坏和拉裂式破坏3类。农一师电力公司煤矿区内岩质崩塌破坏的主要荷载有危岩体自重、天然状态的裂隙水压力、暴雨状态的裂隙水压力和地震力,可以构成3种荷载组合。据此,运用极限平衡理论及岩体结构理论建立了岩质崩塌破坏的计算模型,并对3类变形破坏模式的稳定性进行了计算,为岩质崩塌灾害的治理提供了理论依据。  相似文献   

7.
相邻基坑土条土压力计算方法探讨   总被引:2,自引:0,他引:2  
金亚兵  刘吉波 《岩土力学》2009,30(12):3759-3764
基坑工程实践中,经常遇到相邻基坑土条土压力如何计算的问题,现行基坑规范尚没有计算方法。通过理论探索和工程实践,对前、后期的基坑支护型式进行了归类和组合,提出了相临基坑宽度的确定原则;提出了建立在库仑土压力理论基础之上的简化计算方法--叠加法,推导并给出了非黏性土和黏性土在不同坡率和地面分布有荷载条件下主动土压力系数和土压力的计算公式,并提出了临界宽度的概念和土条土压力折减系数的计算公式。利用所提出的叠加法、临界宽度的概念和土条土压力折减系数的计算公式,可以简捷地计算不同土层、不同坡率和地面荷载条件下的土条土压力合力及土压力强度。工程实践表明,该方法概念清晰、理论依据充分、计算公式简便,以此设计的基坑支护结构安全合理,可供类似基坑支护工程设计参考。  相似文献   

8.
拱形结构爆炸作用荷载分布规律研究   总被引:3,自引:0,他引:3  
洪武  周健南  徐迎  金丰年  范华林 《岩土力学》2012,33(11):3407-3413
采用数值计算方法对地下高边墙拱形结构在爆炸作用下爆炸荷载的分布规律进行了研究。研究结果表明,拱形部分荷载分布主要受爆高、跨度、观测点角度的影响,荷载分布形式是以拱顶为对称轴的马鞍形。爆高与跨度的比值越大,结构上的荷载分布越均匀,反之,则越集中;边墙部分荷载分布主要受爆高、跨度、边墙高度影响,从墙顶开始沿着墙体逐渐衰减,最终趋于均匀。在此基础上,给出了自由场地下大跨度拱形结构荷载的计算方法,并计算了拱形结构上的荷载系数,发现沿着拱形荷载系数并不是固定值,在拱顶最小,近似等于1.5,且随拱角的增加而变大。  相似文献   

9.
地铁隧道竖向土压力荷载的计算研究   总被引:3,自引:0,他引:3  
宋玉香  贾晓云  朱永全 《岩土力学》2007,28(10):2240-2244
在地下结构按荷载结构模型计算分析时,如何确定作用在地下结构上的上覆土荷载的大小及分布是合理设计的关键。对于松软地层浅埋隧道,竖向土压力经常取全部土层厚度重量;而覆土厚度较大时采用坍落拱统计公式以及泰沙基理论或普氏压力拱理论等,这些理论公式在选用时还存在一些问题,值得进一步研究改进。根据北京地铁所处地层、隧道尺寸及埋深情况,采用常用覆土压力理论对北京地铁四、五、十号线标准断面安全度进行试算分析,提出了北京地铁隧道竖向土压力荷载计算方法,对地铁隧道及城市地下工程均具有借鉴参考价值。  相似文献   

10.
板桩加固护岸受力机制的现场试验研究   总被引:3,自引:0,他引:3  
结合长湖申航道湖州段板桩加固护岸实体工程,在板桩预制过程中将土压力计埋入板桩侧面,底板施工时将土压力计埋入底板下,测试了在板桩混凝土凝固硬化过程中土压力计的受力情况、护岸荷载下板桩桩身两侧土压力的分布规律及护岸底板下土压力分布规律。试验结果表明,混凝土凝固硬化过程对埋入板桩两侧的土压力计会产生较大拉压应力并逐步趋于稳定,板桩两侧土压力及底板下土压力受施工荷载的影响在沉桩及底板施工初期存在较大调整并逐步趋于稳定;板桩靠岸侧和临水侧土压力分布存在明显差别,靠岸侧主动土压力分布呈现先增大后减小、然后增大的非线性分布规律,临水侧被动土压力基本呈线性分布。《板桩码头设计与施工规范》[1]中推荐的土压力计算方法计算靠岸侧主动土压力和临水侧被动土压力标准值均较实测值小,基本呈现随着深度的增加差别逐渐增大的规律;在护岸荷载作用下底板下土压力呈现两端大中间小的抛物线分布规律。  相似文献   

11.
施建勇  付磊  朱宁 《岩土力学》2009,30(8):2331-2336
在盾构隧道施工过程中背后注浆是必不可少的,注浆材料在逐步卸载的压力作用下由流动状态变化到固体状态,注浆材料的变形特性将与恒载作用有区别。针对南京地铁1号线实际工程盾构隧道施工注浆材料,进行了卸载条件和恒载条件下注浆材料的流变试验,得到了非线性流变的试验曲线和拟合的流变方程;在半无限空间圆孔扩张位移理论解和注浆材料的流变试验结果的基础上,推求得到隧道所在土层的位移解,确定了位移的影响范围,讨论了地表沉降计算结果的合理性,初步建议确定隧道施工应保护区域的确定原则。  相似文献   

12.
盾构隧道局部长期渗水对隧道变形及地表沉降的影响分析   总被引:3,自引:0,他引:3  
刘印  张冬梅  黄宏伟 《岩土力学》2013,34(1):290-298
研究表明,盾构隧道长期渗水会造成地表及隧道严重沉降。针对盾构隧道局部渗流难以模拟的现状,首先提出了一种既符合盾构隧道刚度要求又能实现局部接头渗水的计算方法;在稳定渗流状态对应的相同渗流量的前提下,对比分析了管片在不同接头渗水条件下隧道周围土体孔压分布、地表和隧道沉降以及隧道变形规律。分析结果表明,盾构隧道渗水接头的位置不同,孔压分布、地表和隧道沉降以及隧道的变形均有明显差异;接头位置越靠近隧道底部,渗水导致的孔压减小越显著,造成的地表及隧道沉降越显著。接头渗水不但会使隧道发生横向椭圆化变形,还会引起隧道左右两侧受力不平衡,从而造成隧道水平侧移。通过对比表明,采用接头渗水和传统的衬砌均质渗水得到的孔压分布、沉降及隧道变形规律均有显著不同;不考虑隧道局部渗水特点会对隧道结构长期性态的认识产生偏差。  相似文献   

13.
为了解软弱土层盾构隧道围岩的变形特性,结合某市地铁盾构下穿既有桥梁结构工程实例,建立每个分析步下盾构动态掘进三维数值模型。模型建立在库仑屈服准则和孔隙水达西定律推导的固结有限元方程上,综合考虑刀盘扭矩、推进力、土仓压力、桥基荷载及孔隙水压力等影响盾构施工质量的诸多因素,结合室内三轴实验和现场实测数据,对盾构动态掘进过程建模原理、模型合理性、围岩变形特性及桥梁结构安全等问题进行研究。研究结果表明:盾构掘进对围岩变形影响表现为接近、穿越和远离3个阶段;盾构接近断面时,受刀盘扭矩、推进力和土仓压力的影响,前方地表出现拱起;盾构穿过、远离断面后,围岩发生沉降、向隧道内和向前运动趋势,变形主要集中洞口上方,呈槽型;地表/桥基沉降计算和实测值吻合,围岩变形能够满足盾构隧道施工安全。  相似文献   

14.
通过对西安地铁隧道穿越地裂缝带的大型物理模型试验成果的分析,提出在地裂缝活动时,穿越地裂缝带的地铁隧道有以下两个方面的变化特征:一是作用于隧道的荷载发生改变;二是在隧道底部产生脱空现象。这种脱空现象无论在整体式隧道还是盾构隧道中都会出现。造成隧道在界面上与土体脱空的原因是隧道和周围地层的变形不协调。脱空区域的大小对地铁隧道的变形与内力计算会产生明显影响。在对隧道变形特征分析的基础上,总结得出了西安地铁穿越地裂缝带隧道变形的4种计算模型:对于整体式长隧道,可以采用一端固定而另一端简支,或一端固定而另一端定向支承的计算模型;对于整体式短隧道,可以采用外伸梁模型;对于盾构隧道,可以采用一端固定而另一端定向支承的计算模型。最后,对脱空条件下隧道数值分析的建模问题进行了讨论。算例分析表明:在数值计算中,对于隧道与土体接触面的界面处理非常关键,否则将造成计算结果的重大误差。  相似文献   

15.
赵永国  邵生俊  韩常领 《岩土力学》2009,30(Z2):509-513
运用有限元数值方法对浅埋、偏压隧道的开挖施工方案进行了数值仿真研究,对比研究了两种不同开挖条件下围岩和支护结构的受力与变形规律的差异,对施工过程中可能产生的变形效应对围岩稳定性的影响展开了深入探讨,给出了既符合隧道设计规范、又满足稳定性要求的施工方案;研究结果可以为浅埋、偏压条件下的隧道设计、施工提供有意义的参考  相似文献   

16.
本文以粉质黏土地层超大直径泥水盾构隧道为工程背景,分析了地表变形特征随盾构掘进参数的变化规律。并针对粉质黏土地层隧道施工监测数据进行分析,提出了超大直径泥水盾构下穿建构筑物的施工关键控制参数。研究结果表明:不同施工参数对地表变形的影响存在显著差异,注浆量相对最大,刀盘扭矩和贯入度相对次之,刀盘推力、泥水压力、注浆压力和掘进速度相对最小。注浆量对地表变形的影响随隧道埋深的变化而变化,当隧道埋深小于一倍洞径时,注浆量对地表变形影响相对较大;当隧道埋深大于一倍洞径时,注浆量对地表变形影响相对较小。刀盘推力与泥水压力、注浆压力以及水土压力之间存在较好的相关关系。当泥水压力比水土压力约大0.1 MPa,注浆压力比水土压力约大0.3MPa时,盾构下穿建构筑物造成的地表变形相对较小,盾构地质适应性得以显著优化。相关研究成果可为后续粉质黏土地层超大直径盾构隧道地表变形分析和施工参数优化等提供理论依据和技术支撑。  相似文献   

17.
魏新江  洪杰  魏纲 《岩土力学》2013,34(3):783-790
应用“源汇法”理论,推导了双圆盾构隧道土体损失产生的三维附加应力计算公式。研究了双圆盾构机正面附加推力、盾壳与土体之间的摩擦力以及土体损失在邻近桩基上引起的总的附加荷载的分布规律。研究结果表明:在双圆盾构开挖面前方地下桩基受到挤压力作用,在开挖面后方负值附加荷载逐渐增大产生拉力,同时双圆盾构机轴线深度附近的桩基部位处产生较大的拉应力和压应力;双圆盾构机与土体之间的摩擦力在附加荷载中特别是y方向的附加荷载起主导作用;垂直于管片方向的附加荷载值较推进方向大,但影响范围小;竖直方向的附加荷载较小,靠近隧道轴线附近的桩基部位受到的附加荷载方向与两端相反,曲线呈“弓”形分布。经与数值模拟、离心试验、现场实测结果对比分析,验证了应用解析解研究双圆盾构隧道开挖对邻近桩基影响是可靠的。  相似文献   

18.
为提升地铁盾构隧道的防灾减灾能力,以北京某典型地铁盾构隧道及邻域的基坑工程为基础,应用相似材料模型试验与数值模拟相结合的方法,研究了上方基坑开挖卸荷-加载作用下地铁盾构隧道的变形特征及围土压力分布规律,并对基坑底部与盾构隧道顶部净距和基坑加载强度的影响进行了分析。研究结果表明:盾构隧道上方基坑开挖卸荷-加载过程中,随着基坑开挖卸荷的进行,盾构隧道逐步上浮,基坑开挖至底部时,竖向位移达到最大值;随着基坑加载的进行,竖向位移可得到适量恢复,最大竖向位移差及最大水平位移差均出现在基坑开挖卸荷完成阶段,此时应尽早完成基础底板封闭施工。基坑开挖卸荷-加载过程中,盾构隧道围土压力始终呈葫芦型对称分布,盾构隧道顶部及底部土压力较大,腰部土压力较小,基坑开挖卸荷完成后,长轴方向土压力明显减小,基坑加载完成后,土压力有所恢复,但并未达到最初状态。随着基坑底部与盾构隧道顶部净距的增加,盾构隧道结构位移、拱顶与拱底竖向位移差及水平收敛均逐步减小,当净距大于3 h(h为基坑深度)时,上方基坑卸荷-加载对盾构隧道影响逐步趋于轻微。在基坑加载强度为卸载强度的2倍时,盾构隧道竖向位移可恢复至最初状态。  相似文献   

19.
本文以上海某盾构法隧道开挖为例,根据原状土卸载应力路径下的回弹试验结果,探讨了土体在卸荷状态下的变形特性,并对盾构法隧道开挖卸荷影响深度进行了初步分析探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号