首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New major and trace element data for the Permo–Triassic basalts from the West Siberian Basin (WSB) indicate that they are strikingly similar to the Nadezhdinsky suite of the Siberian Trap basalts. The WSB basalts exhibit low Ti/Zr (50) and low high-field-strength element abundances combined with other elemental characteristics (e.g., low Mg#, and negative Nb and Ti anomalies on mantle-normalised plots) typical of fractionated, crustally contaminated continental flood basalts (CFBs). The major and trace element data are consistent with a process of fractional crystallisation coupled with assimilation of incompatible-element-enriched lower crust. Relatively low rates of assimilation to fractional crystallisation (0.2) are required to generate the elemental distribution observed in the WSB basalts. The magmas parental to the basalts may have been derived from source regions similar to primitive mantle (OIB source) or to the Ontong Java Plateau source. Trace element modelling suggests that the majority of the analysed WSB basalts were derived by large degrees of partial melting at pressures less than 3 GPa, and therefore within the garnet-spinel transition zone or the spinel stability field.

It seems unlikely that large-scale melting in the WSB was induced through lithospheric extension alone, and additional heating, probably from a mantle plume, would have been required. We argue that the WSB basalts are chemically and therefore genetically related to the Siberian Traps basalts, especially the Nadezhdinsky suite found at Noril'sk. This suite immediately preceded the main pulse of volcanism that extruded lava over large areas of the Siberian Craton. Magma volume and timing constraints strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province.  相似文献   


2.
亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究   总被引:1,自引:0,他引:1  
峨眉山(~260 Ma)、西伯利亚(~250 Ma)和德干(~66 Ma)大陆溢流玄武岩是世界上3个重要的大火成岩省.大火成岩省至少具有4个通常被用于识别古地幔柱的标志:(1)先于岩浆作用的地表隆升;(2)与大陆裂谷化和裂解事件相伴;(3)与生物灭绝事件联系密切;(4)地幔柱源玄武岩的化学特征.虽然这3个大火成岩省都是来源于原始地幔柱,但是它们的地球化学特征有本质上的差异,反映其地幔柱曾与不同的上地幔库相互作用.(1)峨眉山和西伯利亚大陆溢流玄武岩的母岩浆,在上升过程中经受了与地球化学上和古老克拉通岩石圈地幔相同的上地幔库(EM1型幔源)的相互作用;(2)而德干大火成岩省没有受到地壳(或岩石圈)混染的原生玄武岩则显示地幔柱和EM2之间的Sr-Nd同位素变化.这种差异有可能制约了3个大火成岩省的成矿潜力.峨眉山和西伯利亚大火成岩省含有世界级岩浆矿床,而德干大火成岩省则不含矿.  相似文献   

3.
Thermochemical plumes form at the base of the lower mantle as a consequence of heat flow from the outer core and the presence of local chemical doping that decreases the melting temperature. Theoretical and experimental modelling of thermochemical plumes show that the diameter of a plume conduit remains practically constant during plume ascent. However, when the top of a plume reaches a refractory layer, whose melting temperature is higher than the melt temperature in the plume conduit, a mushroom-shaped plume head develops. Main parameters (melt viscosity, ascent time, ascent velocity, temperature differences in the plume conduit, and thermal power) are presented for a thermochemical plume ascending from the core–mantle boundary. In addition, the following relationships are developed: the pressure distribution in the plume conduit during the ascent of a plume, conditions for eruption-conduit formation, the effect of the PT conditions and controls on the shape and size of a plume top, heat transfer between a thermochemical plume and the lithosphere (when the plume reaches the bottom of a refractory layer in the lithosphere), and eruption volume versus the time interval t1 between plume formation and eruption. These relationships are used to determine thermal power and time t1 for the Tunguska syneclise and the Siberian traps as a whole.

The Siberian and other trap provinces are characterized by giant volumes of lavas and sills formed a very short time period. Data permit a model for superplumes with three stages of formation: early (variable picrites and alkali basalts), main (tholeiite plateau basalts), and final (ultrabasic and alkaline lavas and intrusions). These stages reflect the evolution of a superplume from the ascent of one or several independent plumes, through the formation of thick lenses of mantle melts underplating the lithosphere and, finally, intrusion and extrusion of differentiated mantle melts. Synchronous syenite–granite intrusions and bimodal volcanism abundant in the margins of the Siberian traps are the result of melting of the lower crust at depths of 65–70 km under the effect of plume melts.  相似文献   


4.
位于中国东南部的三水盆地、珠江口盆地、雷琼半岛和北部湾地区广泛分布新生代火山岩。火山岩的形成时间具有从内陆向沿海变新的特点,早第三纪三水和珠江口盆地火山岩具有由玄武岩与粗面岩-流纹岩构成的双峰式特点。其中玄武岩和粗面岩的微量元素和稀土元素的配分形式相似,富集大离子亲石元素并且有相似的εNd(T)同位素组成(2.34~6.4),说明它们来自相同的地幔源区,为同源岩浆演化的产物。玄武岩和粗面岩经历了不同的结晶分异过程,其中玄武岩在较深部岩浆房中经历橄榄石和单斜辉石为主的分离结晶作用,而粗面岩则是在浅部岩浆房中由玄武岩浆分异形成的过渡性岩浆再经过强烈的钾长石和斜长石、以及磷灰石的结晶分异形成的。晚第三纪珠江口盆地和北部湾火山岩、雷琼半岛第四纪火山岩则由碱性和拉斑玄武岩构成。这些火山岩的形成时间和地球化学和同位素特征表明它们经历了连续的软流圈地幔上涌和部分熔融过程,受控于自晚中生代以来的地幔柱构造。南海的形成是地幔柱活动引起的地幔上涌和大陆裂解作用的结果。  相似文献   

5.
The Deccan flood basalt province of west-central India has been linked to the Reunion plume, and reconstructions suggest that the Kutch region was over the plume at the time of Deccan volcanism at 65-68 Ma. Field relations and isotopic data indicate that the alkaline basalts of Kutch, which occur to the NNW of the main Deccan tholeiitic province, preceded the main flood-basalt volcanism and are related to the limited plume incubation period. Several plugs of these alkali basalts contain small spinel peridotite xenoliths of mantle origin. The minerals of the spinel peridotites have been analyzed for their major, trace, and rare-earth element (REE) concentrations using electron micro-probe and LAM-ICPMS techniques. The modes and mineral chemistry, especially of the clinopyroxenes, indicate a fertile mantle; modeling of the clinopyroxene REE data is consistent with <5 to 15% of partial melting of a primitive mantle source material in the spinel peridotite field. Subsequent cryptic metasomatism introduced LREE, U, Th, and Zr. The xenoliths may represent: (1) young lithosphere generated during the lithospheric extension that preceded the main Deccan volcanism; or (2) material from the uppermost parts of the rising plume, brought to the surface by the first stages of the volcanism. Their low equilibration temperatures (≤900°C) and their textural and chemical similarity to xenolith suites from other Phanerozoic intraplate settings favor the first alternative. However, the extensive cryptic metasomatism may reflect the influence of the rising Deccan plume.  相似文献   

6.
The Kuznetsk Basin is located in the northern part of the Altai–Sayan Folded Area (ASFA), southwestern Siberia. Its Late Permian–Middle Triassic section includes basaltic stratum-like bodies, sills, formed at 250–248 Ma. The basalts are medium-high-Ti tholeiites enriched in La. Compositionally they are close to the Early Triassic basalts of the Syverma Formation in the Siberian Flood basalt large igneous province, basalts of the Urengoi Rift in the West Siberian Basin and to the Triassic basalts of the North-Mongolian rift system. The basalts probably formed in relation to mantle plume activity: they are enriched in light rare-earth elements (LREE; Lan = 90–115, La/Smn = 2.4–2.6) but relatively depleted in Nb (Nb/LaPM = 0.34–0.48). Low to medium differentiation of heavy rare-earth elements (HREE; Gd/Ybn = 1.4–1.7) suggests a spinel facies mantle source for basaltic melts. Our obtained data on the composition and age of the Kuznetsk basalts support the previous idea about their genetic and structural links with the Permian–Triassic continental flood basalts of the Siberian Platform (Siberian Traps) possibly related to the activity of the Siberian superplume which peaked at 252–248 Ma. The abruptly changing thickness of the Kuznetsk Late Permian–Middle Triassic units suggests their formation within an extensional regime similar to the exposed rifts of Southern Urals and northern Mongolia and buried rifts of the West Siberian Basin.  相似文献   

7.
Following the amalgamation of the Siberian and North China Cratons, NE China, as part of the Central Asian Orogenic Belt (CAOB), underwent Late Mesozoic lithospheric extension that was associated with volcanic activity. The Songliao Basin is the most important rift structure formed during these processes and contains voluminous volcanic rocks interlayered with sedimentary infill. Mafic-to-intermediate lavas are associated with felsic ones. This study focusses on the geochemical compositions of the less-widespread Early Cretaceous mafic-to-intermediate lavas in the Songliao Basin and compares them with the more abundant felsic rocks. Two mafic-to-intermediate magma series, one with alkaline and the other with sub-alkaline affinity, were identified. High MgO and Cr contents, low Th/Nb and La/Nb ratios, and variable but depleted Nd isotope compositions indicate that both magma suites were most likely formed by the melting of enriched upper mantle sources. Sub-alkaline mafic-to-intermediate rocks and I-type rhyolites define a co-genetic magma series. This rock suite was produced by the melting of subduction-modified lithospheric mantle and subsequent magma evolution as well as crustal melting during lithospheric extension. Alkaline mafic-to-intermediate rocks and A-type rhyolites form another co-genetic magma suite that was produced under within-plate conditions from an OIB-type mantle source, supposed to be the heterogeneous shallow asthenosphere and/or the lower lithosphere. Decompression partial melting of this mantle source requires a relatively thin lithosphere. The development of alkaline mafic rocks and A-type rhyolites as typical bimodal volcanic assemblage reflects that lithospheric thinning below the Songliao Basin reached its maximum, whereas basin rifting terminated afterwards.  相似文献   

8.
We have revealed the spatio-temporal regularities of distribution of platinum group elements (PGE) in basaltoids related to the activity of the Siberian mantle plume. As objects of study, we chose rift and flood basalts from the Norilsk district (sampled from the SD-9 borehole), flood basalts from the central part of the Tunguska syneclise (Lower Tunguska), Kuznetsk Basin traps, and subalkalic basalt from the Semeitau volcanoplutonic structure in eastern Kazakhstan. Based on the PGE patterns of basaltoids related to the activity of the Permo-Triassic Siberian plume, we have shown that the rocks that formed in the central part of the Siberian Large Igneous Province (LIP) at the early rift stage have low contents of PGE, whereas picrites and tholeiitic flood basalts have high contents. The rift (Semeitau structure) and flood (Kuznetsk Basin traps) basalts from the peripheral regions are characterized by extremely low PGE contents. The high PGE contents in magmas of the plume head are responsible for the high productivity of ultramafic-mafic trap magmatism. The elevated K contents in magmas and the high PGE contents in the mantle plume head are probably due to the ascent of deep-seated material from the core-lower-mantle boundary, as follows from the thermochemical model of the Siberian plume.  相似文献   

9.
The origins of the Karoo Basin have never been adequately explained, but twomain models have been suggested: (1) a purely foreland basin (retro-arc) model; and (2) a polyphase successor basin, beginning with extension during Upper Table Mountain Group (Silurian) times to a foreland basin in the Early Karoo (Permian) and extension in the Upper Karoo (Upper Triassic-Jurassic). Subsidence and forward modelling on the known stratigraphy of the Karoo Basin do not fit a simple foreland basin model. This is particularly true for the Upper Karoo where the stratigraphy, stacking patterns and age of the succession suggest that the foreland basin model is not viable, and that continental extension played a major role in late basin development. Evidence for extension, and when this occurred, is provided by: (1) sequence stratigraphical identification of a major Middle-Late Carnian low stand sequence boundary unconformity, related to uplift of a newly emergent source area in the southeast; and (2) the presence of volcanic detritus in Upper Karoo sediments, chemically similar to the Karoo basalts, suggesting a possible chemogenetic link between them and, by implication, with early volcanism and incipient Gondwana rifting, now well-preserved in the rift sequences of East Antarctica. This early volcanism, which began not later than the Carnian (∼230 Ma), and provenance uplift, may be related to a thermal anomaly linked to mantle plume-induced updoming, crustal extension and faulting approximately 40 Ma prior to maximum uplift preceeding Karoo Basalt eruption at 183 Ma. Thermal uplift occurred some 200 km off the present southeast coast of South Africa, just south of the Karoo Hotspot, but away from the direct influence of any known hotspot or hotspot track. This uplift, aligned parallel to the southeast coast of South Africa, at a high angle to the Cape Fold Belt, was located close to the site of later rifting and separation along the Agulhas Falkland Fracture Zone.  相似文献   

10.
《International Geology Review》2012,54(14):1576-1592
Topographic uplifts in the central Sahara occur in the Hoggar-Aïr and Tibesti-Gharyan swells that consist of Precambrian rocks overlain by Cenozoic volcanic rocks. The swells and associated Cenozoic volcanism have been related either to mantle plumes or to asthenospheric upwelling and to partial melting due to rift-related delamination along pre-existing Pan-African mega-shears during the collision between Africa and Europe. The Cenozoic volcanic rocks in the Hoggar generally range from Oligocene tholeiitic/transitional plateau basalts, which occur in the centre of the dome, to Neogene alkali basalts characterized by a decrease in their degree of silica undersaturation and an increase in their La/Yb ratios. The alkali basaltic rocks occur mainly along the margins of the dome and typically have less radiogenic Nd and Sr isotopic ratios than the tholeiitic/transitional basalts. The geochemistry of the most primitive basaltic rocks resembles oceanic island basalt (OIB) tholeiitic – in particular high-U/Pb mantle (HIMU)-type – and is also similar to those of the Circum-Mediterranean Anorogenic Cenozoic Igneous (CiMACI) province. These characteristics are consistent with, but do not require, a mantle plume origin. Geophysical data suggest a combination of the two mechanisms resulting in a complex plumbing system consisting of (a) at depths of 250–200 km, an upper mantle plume (presently under the Aïr massif); (b) between 200 and 150 km, approximately 700 km northeastward deflection of plume-derived magma by drag at the base of the African Plate and by mantle convection; (c) at approximately 150 km, the magma continues upwards to the surface in the Tibesti swell; (d) at approximately 100 km depth, part of the magma is diverted into a low S-wave velocity corridor under the Sahara Basin; and (e) at approximately 80 km depth, the corridor is tapped by Cenozoic volcanism in the Hoggar and Aïr massifs that flowed southwards along reactivated Precambrian faults.  相似文献   

11.
The Mesozoic stratigraphy in the subsurface of the West Siberian Basin contains prolific hydrocarbon accumulations, and thus the depositional environments of marine and marginal marine Jurassic and Cretaceous age sediments are well-established. However, no information is currently available on strata of equivalent age that crop out along the SE basin margin in the Mariinsk–Krasnoyarsk region, despite the potential of these exposures to supply important information on the sediment supply routes into the main basin. Detailed sedimentological analysis of Jurassic–Cretaceous clastic sediments, in conjunction with palaeo-botanical data, reveals five facies associations that reflect deposition in a range of continental environments. These include sediments that were deposited in braided river systems, which were best developed in the Early Jurassic. These early river systems infilled the relics of a topography that was possibly inherited from earlier Triassic rifting. More mature fluvial land systems evolved in the Mid to Late Jurassic. By the Mid Jurassic, well-defined overbank areas had become established, channel abandonment was commonplace, and mudrocks were deposited on floodplains. Coal deposition occurred in mires, which were subject to periodic incursions by crevasse splay processes. Cretaceous sedimentation saw a renewed influx of sand-grade sediment into the region. It is proposed that landscape evolution throughout the Jurassic was driven simply by peneplanation rather than tectonic processes. By contrast, the influx of sandstones in the Cretaceous is tentatively linked to hinterland rejuvenation/ tectonic uplift, possibly coeval with the growth of large deltaic clinoform complexes of the Neocomian in the basin subsurface.  相似文献   

12.
Possible mechanisms of rifting and the thermal regime of the lithosphere beneath the rift zone of the Vilyui sedimentary basin are considered based on the available isotopic ages of dike swarms, rates of sedimentation, and results of numerical modeling. Temporal correlations between the intrusion of mafic magma and a sharp increase in the rate of subsidence and sedimentation in the rift basin prove the contribution of both plate-tectonic and magmatic factors to the formation of the Vilyui rift. The results show a relationship between the rapid extension of the lithosphere and the formation of mafic dike swarms in the Yakutsk-Vilyui Large Igneous Province of the Siberian Platform at the Frasnian-Famennian boundary, with a peak at ~ 374.1 Ma, and at the end of the Late Devonian, with a peak at ~ 363.4 Ma. There were two pulses of dike formation during rapid subsidence of the basin basement in the period 380-360 Ma, with a sedimentation rate of 100-130 m/Myr, at a background rate of 10-20 m/Myr. Analysis of numerical thermomechanical models revealed that the best-fit model is that combining the mechanisms of intraplate extension (passive rifting) and the ascent of a mantle magmatic diapir (active rifting). A conclusion about the nature of the heat source of trap magmatism has been drawn: The plume-driven regime of the lithosphere can better explain the dynamics of extension during rifting than the decompression melting mechanism.  相似文献   

13.
The type of convergent boundaries forming in the area of mantle plumes is considered. These convergent boundaries (West Pacific type) are characteristic of the western margin of the Pacific. West Pacific-type boundaries are a regular succession of structures from ocean to continent: island arcs, marginal basins, rift basins, and associated OIB-type volcanics at the continental edge. The convergence zones are up to a thousand kilometers wide.Studies of the history of the part of the Central Asian Fold Belt forming the folded periphery of the Siberian continent have shown that the continent drifted above the African plume or corresponding low-velocity mantle province for most of the Phanerozoic (up to the Early Mesozoic inclusive). This fact determined the West Pacific type of convergent boundaries for the accretionary structures of the Central Asian Fold Belt. The drift of Siberia from African to Pacific province in the Late Cenozoic determined the structure and development of the convergent boundary in the western Pacific, including extensive intraplate magmatism in continental Asia in the Late Mesozoic and Cenozoic.  相似文献   

14.
Summary The Karakoram micro-plate is the southern most sector of the Central Asian micro-plate mosaic which was separated by a narrow rift basin. A major rifting phase started during Permian time, which lead to drift of not only Karakoram but of the entire Eurasian (Asian) Plate from Gondwana land. This was at a time when a prominent sequence of black argillites occupied most part of the Karakoram Tethys basin. The geodynamic setting for this sequence may be interpreted as the evolution of a passive margin affected by extensional tectonics. The extensional activity is evident from the extrusion of basalts and komatiitic rocks in the region. In this paper the geochemical relations between komatiites and basalts of the Chhongtash, southeast Karakoram are investigated. The basaltic and komatiitic (ultrabasic) flows are petrologically and geochemically distinct, yet they display a close spatial and temporal association, and they are related to each other through olivine and clinopyroxene fractionation. The chemical characteristics of the ultrabasic to basic magmatism in the region is consistent with formation above a mantle plume that impinged on the continental lithosphere. Hence, a model of partial melting in a mantle plume and fractional crystallization in a deep-seated magma chamber is envisaged to explain the evolution of these volcanic rocks. The komatiite melts are interpreted to have been derived by high degree partial melting of mantle plumes in the tail region, while the basalts were interpreted to be the result of interaction of source plume with cool mantle through which the plume head passed. This study is the first of its kind, to suggest a rift related nature in the Chhongtash, southeast Karakoram, that represent the initial stage of Mesozoic rifting along the southern margin of Eurasia when Gondwana started to drift away from Eurasia.  相似文献   

15.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

16.
辽西早白垩世义县组火山夺的起源及壳幔相互作用   总被引:11,自引:1,他引:11  
对燕山造山带辽西早白垩世义县组火山岩的Nd,Sr,Pb同位素分析,作者认为义县组火山岩起源于岩石圈地幔的部分熔融,岩浆在上侵过程中发生了结晶分异和同化混染作用,即AFC过程。与新生代汉诺坝玄武岩中的中生代镁铁质麻粒岩捕虏体和太古代片麻岩对比研究,发现义县组火山岩与这些镁铁质麻粒岩捕虏体有许多地球化学相似之处,而与长英质麻粒岩捕虏体和太古代各种片麻岩差别较大。作者认为早白垩世燕山板内造山带发生了强烈的岩石圈伸展作用,辽西义县组火山岩和汉坝新生代玄武岩中的镁铁质麻粒岩捕虏体均为这一构造背景下的产物,它们属于幔源岩浆喷发与大规模玄武zh质岩浆底侵作用形成的“同质异相体”。  相似文献   

17.
方念乔 《现代地质》2022,36(1):1-13
通过剖析和总结两个重要的研究经历和学术成果:(1)应用东北印度洋的深海钻心研究喜马拉雅山—青藏高原隆升,(2)应用南海周边陆域的岩浆-沉积记录研究“古南海”的消亡和南海的早期开裂,作者阐释了对于这一特殊的“海陆对比”研究的理解、策划与心得体会。在前一项凭海观山的研究中,首先明确在东北印度洋区存在两类组分、成因各不相同的深海沉积序列,它们分别坐落于孟加拉海底扇和东经90°海岭,在响应山脉隆升的方式上各具优势。经过对两个序列的替代性指标的严格筛选与对比,确定3.6~3.2 Ma和1.0~0.6 Ma是晚中新世以来山脉与高原隆升影响最为深刻的关键时段。在第二项由陆识海的研究中,须要处理的则是较第一项更为复杂的包括岩浆、构造、沉积甚至陆上钻井在内的地质记录,而且其保存条件远逊深海沉积系列。此类研究的优势在于,可以避免单一钻孔记录的局限性,助力研究者在更广阔的区域内综合各种适用的基础材料,构建反映海陆一体化的区域构造演化框架。在华南大陆边缘,存在中生代晚期活动陆缘向新生代被动陆缘的重大构造转换。为建立一个完整的陆缘弧体系,作者于研究区布设了“十字形”考察路线,在东西向追索最初发现于海南的陆缘弧的展布特征,在南北向查明陆缘弧的结构样式,发现在白垩纪中期(110~80 Ma)发生强烈的因板块汇聚而产生的区域隆升,且由南向北隆升强度减弱。经过与同期浙闽陆缘岩浆-沉积记录的综合对比,认为中生代向北俯冲的“古南海”很可能属于业已消亡的特提斯域。中生代末华南陆缘进入全新的发展阶段,三水盆地因展现白垩纪—始新世规模最大且保存最好的岩浆-沉积过程被选为被动陆缘破裂研究的中心地区。古新世晚期(~57 Ma)以碱性玄武岩-粗面岩-钠闪碱流岩为代表的碱性系列双峰式火山喷发活动在研究区兴起,并一直持续到盆地停止发育(42~38 Ma)。实验数据显示:(1)岩浆源区位于软流圈地幔,即使喷发规模最大的粗面岩和碱流岩,也是来自幔源玄武质岩浆的分阶段结晶分异,(2)计算得到的地幔热异常并不明显。作者综合所得结果判断,研究区不存在主导区域构造运动的深源地幔柱,三水盆地发达的火山岩系产出的真实背景在于,中生代晚期的俯冲-碰撞使得岩石圈缩短加厚,于中新生代之交发生拆沉作用和软流圈上涌。这一区域构造环境不仅导致新生代早期的华南裂谷作用,很可能对其后的南海扩张也产生重要影响。现代地球科学将海和陆这两个最大的地理单元紧密地联系在一起,从海洋采集相关的地质信号研究大陆构造,抑或反之,都给我们提供了审视和解决科学问题的新的有效视窗。  相似文献   

18.
Late Mesozoic and Cenozoic volcanic rocks in eastern Papua record a complex series of volcanotectonic events which reflect interaction between the Indo-Australian and Solomon sea plates. Basement formations of Upper Cretaceous and Eocene submarine basalt are comparable to those characteristic of sea floor spreading centers and are thought to have originated during volcanic activity associated with spreading in the Coral Sea basin. Arc-trench type andesitic volcanism was prominent during the late Cenozoic but shows no clear relationship to a subduction event. An alternative explanation links the development of thickened crust and consequent crust/mantle interaction with the generation of andesitic magmas. The tectonic environment of eastern Papua during the late Cenozoic was one of block faulting and uplift associated with crustal tension. The presence of Quaternary peralkaline rhyolites suggests that this environment is now being replaced by active rifting.  相似文献   

19.
Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin.However,when and how it influenced the hyper-extended basin is unclear.To resolve these issues,a detailed analysis of the Cenozoic time-varying residual subsidence derived by subtracting the predicted subsidence from the backstripped subsidence was performed along a new seismic reflection line in the western Qiongdongnan Basin.For the first time,a method is proposed to cal-culate the time-varying strain rates constrained by the faults growth rates,on basis of which,the pre-dicted basement subsidence is obtained with a basin-and lithosphere-scale coupled finite extension model,and the backstripped subsidence is accurately recovered with a modified technique of backstrip-ping to eliminate the effects of later episodes of rifting on earlier sediment thickness.Results show no residual subsidence in 45-28.4 Ma.But after 28.4 Ma,negative residual subsidence occurred,reached and remained ca.-1000 m during 23-11.6 Ma,and reduced dramatically after 11.6 Ma.In the syn-rift period(45-23 Ma),the residual subsidence is ca.-1000 m,however in the post-rift period(23-0 Ma),it is positive of ca.300 to 1300 m increasing southeastwards.These results suggest that the syn-rift sub-sidence deficit commenced at 28.4 Ma,while the post-rift excess subsidence occurred after 11.6 Ma.Combined with previous studies,it is inferred that the opposite residual subsidence in the syn-and post-rift periods with similar large wavelengths(>102 km)and km-scale amplitudes are the results of transient dynamic topography induced by deep mantle upwelling beneath the central QDNB,which started to influence the basin at ca.28.4 Ma,continued into the Middle Miocene,and decayed at ca.11.6 Ma.The initial mantle upwelling with significant dynamic uplift had precipitated considerable con-tinental extension and faulting in the Late Oligocene(28.4-23 Ma).After ca.11.6 Ma,strong mantle upwelling probably occurred beneath the Leizhou-Hainan area to form vast basaltic lava flow.  相似文献   

20.
During the Late Mesozoic and Cenozoic, extension was widespread in Eastern China and adjacent areas. The first rifting stage spanned in the Late Jurassic–Early Cretaceous times and covered an area of more than 2 million km2 of NE Asia from the Lake Baikal to the Sikhot-Alin in EW direction and from the Mongol–Okhotsk fold belt to North China in NS direction. This rifting was characterized by intracontinental rifts, volcanic eruptions and transform extension along large-scale strike–slip faults. Based on the magmatic activity, filling sequence of basins, tectonic framework and subsidence analysis of basins, the evolution of this area can be divided into three main developmental phases. The first phase, calc-alkaline volcanics erupted intensely along NNE-trending faults, forming Daxing'anling volcanic belt, NE China. The second phase, Basin and Range type fault basin system bearing coal and oil developed in NE Asia. During the third phase, which was marked by the change from synrifting to thermal subsidence, very thick postrift deposits developed in the Songliao basin (the largest oil basin in NE China).Following uplift and denudation, caused by compressional tectonism in the near end of Cretaceous, a Paleogene rifting stage produced widespread continental rift systems and continental margin basins in Eastern China. These rifted basins were usually filled with several kilometers of alluvial and lacustrine deposits and contain a large amount of fossil fuel resources. Integrated research in most of these rifting basins has shown that the basins are characterized by rapid subsidence, relative high paleo-geothermal history and thinned crust. It is now accepted that the formation of most of these basins was related to a lithospheric extensional regime or dextral transtensional regime. During Neogene time, early Tertiary basins in Eastern China entered a postrifting phase, forming regional downwarping. Basin fills formed in a thermal subsidence period onlapped the fault basin margins and were deposited in a broad downwarped lacustrine depression. At the same time, within plate rifting of the Lake Baikal and Shanxi graben climaxed and spreading of the Japan Sea and South China Sea occurred. Quaternary rifting was marked by basalt eruption and accelerated subsidence in the area of Tertiary rifting. The Okinawa Trough is an active rift involving back-arc extension.Continental rifting and marginal sea opening were clearly developed in various kind of tectonic settings. Three rifting styles, intracontinental rifting within fold belt, intracontinental rifting within craton and continental marginal rifting and spreading, are distinguished on the basis of nature of the basin basement, tectonic location of rifting and relations to large strike–slip faults.Changes of convergence rates of India–Eurasia and Pacific–Eurasia may have caused NW–SE-trending extensional stress field dominating the rifting. Asthenospheric upwelling may have well assisted the rifting process. In this paper, a combination model of interactions between plates and deep process of lithosphere has been proposed to explain the rifting process in East China and adjacent areas.The research on the Late Mesozoic and Cenozoic extensional tectonics of East China and adjacent areas is important because of its utility as an indicator of the dynamic setting and deformational mechanisms involved in stretching Lithosphere. The research also benefits the exploration and development of mineral and energy resources in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号