首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

2.
IPCC A2情景下中国区域气候变化的数值模拟   总被引:8,自引:1,他引:8  
在政府间气候变化委员会(IPCC)排放情景特别报告 (SRES)的A2情景下,利用CSIRO Mark3海气耦合模式模拟现代和未来2个10年的模拟结果,驱动MM5区域气候模式进行中国未来区域气候变化的数值模拟试验,研究了IPCC A2情景下未来中国温度、降水和环流等的变化趋势.结果表明,(1)区域气候模式MM5V3能够再现气候平均环流、降水和温度分布的主要特征,具有较好的区域气候变化模拟能力;(2)IPCC A2情景下,未来中国平均地面气温将有明显的升高,特别是中国的东北、西北和西南地区增幅超过了1 ℃.冬季,地面平均气温的增幅由南至北逐渐增加;夏季,在内蒙和中国西南地区有明显的增温.伴随温度的升高,降水也有明显的变化,年平均降水在中国的东北地区、江淮流域及以南大部分地区都有明显的增强,而中国华北部分地区及西南、西北大部分地区降水将呈减少趋势.不同季节不同地区的降水变化也不同,秋季华北、华南和江淮地区降水都增加,而冬季减少.降水的年内变化也有所增强.  相似文献   

3.
 The potential climatic consequences of increasing atmospheric greenhouse gas (GHG) concentration and sulfate aerosol loading are investigated for the years 1900 to 2100 based on five simulations with the CCCma coupled climate model. The five simulations comprise a control experiment without change in GHG or aerosol amount, three independent simulations with increasing GHG and aerosol forcing, and a simulation with increasing GHG forcing only. Climate warming accelerates from the present with global mean temperatures simulated to increase by 1.7 °C to the year 2050 and by a further 2.7 °C by the year 2100. The warming is non-uniform as to hemisphere, season, and underlying surface. Changes in interannual variability of temperature show considerable structure and seasonal dependence. The effect of the comparatively localized negative radiative forcing associated with the aerosol is to retard and reduce the warming by about 0.9 °C at 2050 and 1.2 °C at 2100. Its primary effect on temperature is to counteract the global pattern of GHG-induced warming and only secondarily to affect local temperatures suggesting that the first order transient climate response of the system is determined by feedback processes and only secondarily by the local pattern of radiative forcing. The warming is accompanied by a more active hydrological cycle with increases in precipitation and evaporation rates that are delayed by comparison with temperature increases. There is an “El Nino-like” shift in precipitation and an overall increase in the interannual variability of precipitation. The effect of the aerosol forcing is again primarily to delay and counteract the GHG-induced increase. Decreases in soil moisture are common but regionally dependent and interannual variability changes show considerable structure. Snow cover and sea-ice retreat. A PNA-like anomaly in mean sea-level pressure with an enhanced Aleutian low in northern winter is associated with the tropical shift in precipitation regime. The interannual variability of mean sea-level pressure generally decreases with largest decreases in the tropical Indian ocean region. Changes to the ocean thermal structure are associated with a spin-down of the Atlantic thermohaline circulation together with a decrease in its variability. The effect of aerosol forcing, although modest, differs from that for most other quantities in that it does not act primarily to counteract the GHG forcing effect. The barotropic stream function in the ocean exhibits modest change in the north Pacific but accelerating changes in much of the Southern Ocean and particularly in the north Atlantic where the gyre spins down in conjunction with the decrease in the thermohaline circulation. The results differ in non-trivial ways from earlier equilibrium 2 × CO2 results with the CCCma model as a consequence of the coupling to a fully three-dimensional ocean model and the evolving nature of the forcing. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

4.
Learning from integrated assessment of climate change   总被引:1,自引:0,他引:1  
The objective of integrated assessment of climate change is to put available knowledge together in order to evaluate what has been learned, policy implications, and research needs. This paper summarizes insights gained from five years of integrated assessment activity at Carnegie Mellon. After an introduction, in Section 2 we ask: who are the climate decision makers? We conclude that they are a diffuse and often divergent group spread all over the world whose decisions are primarily driven by local non-climate considerations. Insights are illustrated with results from the ICAM-2 model. In Section 3 we ask: what is the climate problem? In addition to the conventional answer, we note that in a democracy the problem is whatever voters and their elected representatives think it is. Results from studies of public understanding are reported. Several other specific issues that define the problem, including the treatment of aerosols and alternative indices for comparing greenhouse gases, are discussed. In Section 4 we discuss studies of climate impacts, focusing on coastal zones, the terrestrial biosphere and human health. Particular attention is placed on the roles of adaptation, value change, and technological innovation. In Section 5 selected policy issues are discussed. We conclude by noting that equity has received too little attention in past work. We argue that many conventional tools for policy analysis are not adequate to deal with climate problems. Values that change, and mixed levels of uncertainty, pose particularly important challenges for the future.  相似文献   

5.
Marco Grasso 《Climatic change》2007,81(3-4):223-246
The article spells out four domains of international distributive justice and the consequent criteria of equity, the purpose being to identify a pluralistic normative ethical framework for climate mitigation and adaptation strategies. Justice and equity should play a major role in favouring collective action against climate change, because the more the various dimensions of such action are just, the more any international climate initiative is feasible in principle. As far as mitigation is concerned, the definition of a just initial allocation of endowments focuses on the criterion of differentiated equality, taking account of undeserved inequalities as suggested by Rawls’ theory of justice as fairness. With regard to the subsequent exchange of endowments, the Pareto principle, supplemented by the envy-freeness one, is a viable option. Possibly a sound reference for the just financing of adaptation activities is the criterion of differentiated historical responsibility, backed by Rawls’ theory of justice as fairness. As regards the allocation of adaptation resources, the criterion of lack of human security, as substantiated in Sen’s capability approach, seems promising.  相似文献   

6.
7.
8.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

9.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

10.
11.
A double-resolution regional experiment on hydrodynamic simulation of climate over the eastern Mediterranean (EM) region was performed using an International Center for Theoretical Physics, Trieste RegCM3 model. The RegCM3 was driven from the lateral boundaries by the data from the ECHAM5/MPI-OM global climate simulation performed at the MPI-M, Hamburg and based on the A1B IPCC scenario of greenhouse gases emission. Two simulation runs for the time period 1960-2060, employing spatial resolutions of 50?km/14?L and 25?km/18?L, are realized. Time variations of the differences in the space distributions of simulated climate parameters are analyzed to evaluate the role of smaller scale effects. Both least-square linear and non-linear trends of several characteristics of the EM climate are evaluated in the study. One of the key findings with regard to linear trends is a notable and statistically significant precipitation drop over the near coastal EM zone during December-February and September-November. Statistically significant positive air temperature trends are projected over the entire EM region during the four seasons. Also projected are increases in air temperature extremes and the relative contribution of convective processes in the Southern Mediterranean coastal zone (ECM) region. A notable sensitivity of projected larger-scale climate change signals to smaller-scale effects is also demonstrated.  相似文献   

12.
13.
通过对区域气候季节变化的模拟,对p-·坐标系区域气候模式的模拟能力进行了检验。模式较准确地再现了中国区域气候系统的季节性变化特征及中国东部降水带的季节性进退,模拟的各气候区降水的季节变化趋势也与实况基本相符,但模式低估了华东和华南地区的春季降水,而高估了华东、西南和西北地区的秋季降水。  相似文献   

14.
We use a seasonal energy balance climate model to study the behavior of the snowline cycle as a function of external parameters such as the solar constant. Our studies are confined in this study to cases with zonally symmetric land-sea distributions (bands or caps of land). The model is nonlinear in that the seasonally varying snow/sea ice line modifies the energy receipt through its different albedo from open land or water. The repeating steady-state seasonal cycle of the model is solved by a truncated Fourier series in time. This method is several thousand times faster than a time stepping approach. The results are interesting in that a number of bifurcations in the snowline behavior are found and studied for various geographies. Polar land caps and land bands positioned near the poles exhibit a variety of discontinuous summer snow cover behaviors (abrupt transitions as a parameter such as solar constant is slowly varied), which may be relevant to the inception and decay of continental ice sheets.  相似文献   

15.
Levine  Adam Seth  Kline  Reuben 《Climatic change》2017,142(1-2):301-309

Many scholars study when climate change communication increases citizen engagement. Yet, past work has largely used public opinion-based measures of engagement to evaluate alternative frames. In this paper, we argue for a new approach to evaluation, which is premised on research on the policy-making process showing that space on the political agenda and, ultimately, policy change are more likely to arise in response to changes in both public opinion and collective political action. Thus, we argue that alternative frames should be evaluated based on their consequences for both. This is especially critical given that frames can have divergent effects on attitudes and behavior. Using a combination of field and survey experiments, we apply our approach to evaluate two frames related to climate change risks. We find that they heighten people’s concern about climate change yet decrease their rate of political action to express that concern. Our results suggest caution with regard to these frames in particular and that, more generally, frames that might seem advantageous when examining public opinion may not be when political behavior is analyzed.

  相似文献   

16.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

17.
Climate change policies currently pay disproportionately greater attention to the mitigation of climate change through emission reductions strategies than to adaptation measures. Realising that the world is already committed to some global warming, policy makers are beginning to turn their attention to the challenge of preparing society to adapt to the unfolding impacts at the local level. This two-part article presents an integrated, or `co-evolutionary', approach to using scenarios in adaptation and vulnerability assessment. Part I explains how climate and social scenarios can be integrated to better understand the inter-relationships between a changing climate and the dynamic evolution of social, economic and political systems. The integrated scenarios are then calibrated so that they can be applied `bottom up’ to local stakeholders in vulnerable sectors of the economy. Part I concludes that a co-evolutionary approach (1) produces a more sophisticated and dynamic account of the potential feedbacks between natural and human systems; (2) suggests that sustainability indicators are both a potentially valuable input to and an output of integrated scenario formulation and application. Part II describes how a broadly representative sample of public, private and voluntary organisations in the East Anglian region of the UK responded to the scenarios, and identifies future research priorities.  相似文献   

18.
Projected changes in biodiversity are likely inadequately estimated when climate and land-use change effects are examined in isolation. A review of studies of the effects of these drivers singly and in combination highlights little discussed complexities in revising these estimates. In addition to considering interactions, different characterisations of climate change, land-use change and biodiversity greatly influence estimates. Habitat loss leading to decreased species richness is the most common land-use change and biodiversity relationship considered with less attention being given to other land-use changes (e.g. other conversions, fragmentation, different management intensities) and biodiversity characterisations and responses (e.g. selected groups of species, increased species richness). Characterisations of more complex relationships between climate change, land-use change and biodiversity however are currently limited by a lack of process understanding, data availability and inherent scenarios uncertainties.  相似文献   

19.
A review on aspects of climate simulation assessment   总被引:2,自引:0,他引:2  
This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forecast verification is followed by a discussion on their possible application to evaluation of climate simulation. The authors suggest five strategies to extend the forecast verification methods to climate simulation evaluation regardless significant differences between the forecasts and climate simulations. It is argued that resolution, convection scheme, stratocumulus cloud cover, among other processes in the atmospheric general circulation model (AGCM) and the ocean-atmosphere feedback are the potential causes for the double ITCZ problem in coupled models and AGCM simulations, based on the system- and component-level evaluations as well as the downscaling strategies in some recent research. Evaluations of simulated SAT and monsoons suggest that both coupled models and AGCMs show good performance in representing the SAT evolution and its variability over the past century in terms of correlation and wavelet analysis but poor at reproducing rainfall, and in addition, the AGCM alone is not suitable for monsoon regions due to the lack of air-sea interactions.  相似文献   

20.
Solar radiation cycles, earth-orbital changes, and continental drift drive long to very long term (103–106 years) climatic changes. Lin and North used the stationary solutions of a simple energy balance model (EBM) to study the equilibrium climatic stages. In this paper, we study time dependent solutions and, in particular, transition processes. We make use of two time scales: a seasonal cycle (fast variation) and a long term time change (slow variation). Variations over short time scales are solved using a Fourier transform in time and long term variations are studied using a 4th order Runge-Kutta method. The energy balance equation is a parabolic type equation and it is well posed. Climate changes depend mainly on external forcing and the state of the climate is determined by the slow time scale forcing. In other words, transitions from one climate stage (snow-covered) to another (snow-free) at bifurcation points are monotonic, despite 20% to 50% shortperiod random fluctuations in the solar energy. This smooth transition is especially noticeable when the land bands lie close to the north pole (70° N to 90° N) or at high latitudes (50° N to 75° N).Now at Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号