首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study uses a well-established water balance methodology to evaluate the relative impact of global warming and soil degradation due to desertification on future African water resources. Using a baseline climatology, a GCM global warming scenario, a newly derived soil water-holding capacity data set, and a worldwide survey of soil degradation between 1950 and 1980, four climate and soil degradation scenarios are created to simulate the potential impact of global warming and soil degradation on African water resources for the 2010–2039 time period. Results indicate that, on a continental scale, the impact of global warming will be significantly greater than the impact of soil degradation. However, when only considering the locations where desertification is an issue (wet and dry climate regions), the potential effects of these two different human impacts on local water resources can be expected to be on the same order of magnitude. Drying associated with global warming is primarily the result of increased water demand (potential evapotranspiration) across the entire continent. While there are small increases in precipitation under global warming conditions, they are inadequate to meet the increased water demand. Soil degradation is most severe in highly populated, wet and dry climate regions and results in decreased water-holding capacities in these locations. This results in increased water surplus conditions during wet seasons when the soil's ability to absorb precipitation is reduced. At the same time, water deficits in these locations increase because of reduced soil water availability in the dry seasons. The net result of the combined scenarios is an intensification and extension of drought conditions during dry seasons.  相似文献   

2.
Climate Warming and Water Management Adaptation for California   总被引:1,自引:3,他引:1  
The ability of California's water supply system to adapt to long-term climatic and demographic changes is examined. Two climate warming and a historical climate scenario are examined with population and land use estimates for the year 2100 using a statewide economic-engineering optimization model of water supply management. Methodologically, the results of this analysis indicate that for long-term climate change studies of complex systems, there is considerable value in including other major changes expected during a long-term time-frame (such as population changes), allowing the system to adapt to changes in conditions (a common feature of human societies), and representing the system in sufficient hydrologic and operational detail and breadth to allow significant adaptation. While the policy results of this study are preliminary, they point to a considerable engineering and economic ability of complex, diverse, and inter-tied systems to adapt to significant changes in climate and population. More specifically, California's water supply system appears physically capable of adapting to significant changes in climate and population, albeit at a significant cost. Such adaptation would entail large changes in the operation of California's large groundwater storage capacity, significant transfers of water among water users, and some adoption of new technologies.  相似文献   

3.
Global Warming and Coastal Erosion   总被引:6,自引:0,他引:6  
One of the most certain consequences of global warming is an increase of global (eustatic) sea level. The resulting inundation from rising seas will heavily impact low-lying areas; at least 100 million persons live within one meter of mean sea level and are at increased risk in the coming decades. The very existence of some island states and deltaic coasts is threatened by sea level rise. An additional threat affecting some of the most heavily developed and economically valuable real estate will come from an exacerbation of sandy beach erosion. As the beach is lost, fixed structures nearby are increasingly exposed to the direct impact of storm waves, and will ultimately be damaged or destroyed unless expensive protective measures are taken. It has long been speculated that the underlying rate of long-term sandy beach erosion is two orders of magnitude greater than the rate of rise of sea level, so that any significant increase of sea level has dire consequences for coastal inhabitants. We present in this paper an analytical treatment that indicates there is a highly multiplicative association between long-term sandy beach erosion and sea level rise, and use a large and consistent data base of shoreline position field data to show that there is reasonable quantitative agreement with observations of 19th and 20th century sea levels and coastal erosion. This result means that the already-severe coastal erosion problems witnessed in the 20th century will be exacerbated in the 21st century under plausible global warming scenarios.  相似文献   

4.
Water Resources Implications of Global Warming: A U.S. Regional Perspective   总被引:7,自引:1,他引:7  
The implications of global warming for the performance of six U.S. water resource systems are evaluated. The six case study sites represent a range of geographic and hydrologic, as well as institutional and social settings. Large, multi-reservoir systems (Columbia River, Missouri River, Apalachicola-Chatahoochee-Flint (ACF) Rivers), small, one or two reservoir systems (Tacoma and Boston) and medium size systems (Savannah River) are represented. The river basins range from mountainous to low relief and semi-humid to semi-arid, and the system operational purposes range from predominantly municipal to broadly multi-purpose. The studies inferred, using a chain of climate downscaling, hydrologic and water resources systems models, the sensitivity of six water resources systems to changes in precipitation, temperature and solar radiation. The climate change scenarios used in this study are based on results from transient climate change experiments performed with coupled ocean-atmosphere General Circulation Models (GCMs) for the 1995 Intergovernmental Panel on Climate Change (IPCC) assessment. An earlier doubled-CO2 scenario from one of the GCMs was also used in the evaluation. The GCM scenarios were transferred to the local level using a simple downscaling approach that scales local weather variables by fixed monthly ratios (for precipitation) and fixed monthly shifts (for temperature). For those river basins where snow plays an important role in the current climate hydrology (Tacoma, Columbia, Missouri and, to a lesser extent, Boston) changes in temperature result in important changes in seasonal streamflow hydrographs. In these systems, spring snowmelt peaks are reduced and winter flows increase, on average. Changes in precipitation are generally reflected in the annual total runoff volumes more than in the seasonal shape of the hydrographs. In the Savannah and ACF systems, where snow plays a minor hydrological role, changes in hydrological response are linked more directly to temperature and precipitation changes. Effects on system performance varied from system to system, from GCM to GCM, and for each system operating objective (such as hydropower production, municipal and industrial supply, flood control, recreation, navigation and instream flow protection). Effects were generally smaller for the transient scenarios than for the doubled CO2 scenario. In terms of streamflow, one of the transient scenarios tended to have increases at most sites, while another tended to have decreases at most sites. The third showed no general consistency over the six sites. Generally, the water resource system performance effects were determined by the hydrologic changes and the amount of buffering provided by the system's storage capacity. The effects of demand growth and other plausible future operational considerations were evaluated as well. For most sites, the effects of these non-climatic effects on future system performance would about equal or exceed the effects of climate change over system planning horizons.  相似文献   

5.
全球变暖的科学   总被引:1,自引:1,他引:1  
全球变暖已经是不争的事实.根据目前主要的3个全球温度序列,1910-2009年的变暖趋势为0.70 ~0.75℃/100a[1].粗略地讲,目前已经变暖了0.8℃.如果把气候变化的阈值限制为2℃,则今后只有1.2℃的上升空间,这就是我们面临的严峻形势[2].根据全球气候系统的概念[3],全球变暖不仅仅是地面温度的上升,还包含了冰雪的融化、海平面的上升、多年冻土的退化及全球植被的变化等等.这些变化已经、正在或将来可能影响到人类生活的方方面面.  相似文献   

6.
全球变暖趋缓研究进展   总被引:11,自引:5,他引:11  
近十几年来,全球年平均表面温度上升趋势显示出停滞状态,即全球变暖趋缓,这引起了国际社会的广泛关注,同时也引发了对全球变暖的质疑,各国气候学家正努力就全球变暖趋缓的事实、原因及其可能影响展开研究。本文综述了目前国内外对全球变暖趋缓的研究结果。多数科学家认可近十几年来全球变暖停滞的事实,并认为太阳活动处于低位相、大气气溶胶(自然和人为)增加以及海洋吸收热量是变暖停滞的可能影响因子,其中海洋(尤其是700米以下的深海)对热量的储存可能是变暖停滞的关键。国际耦合模式比较计划第5阶段中的模式并未精确地描述各种有利降温影响因子的近期位相演变,因而其模拟的近期增暖趋势较观测偏强。由此推断,变暖停滞主要是自然因素造成的,并且预测变暖趋缓将在近几年或几十年内结束(依赖于太平洋年代际振荡的位相转变),未来气温将仍主要受到温室气体增加的影响而表现出明显的上升趋势。因此,目前的全球变暖趋缓不大可能改变到本世纪末全球大幅度变暖带来的风险。本综述展望未来的研究热点包括:精确估算全球气温和海洋热含量的变率及其不确定性,海洋年代际信号(太平洋以及大西洋的年代际振荡)的转型机制,存储在深海的热量将在何时返回海洋表面及其对区域气候的潜在影响。  相似文献   

7.
Attitudes toward global warming are influenced by various heuristics, which may distort policy away from what is optimal for the well-being of people. These possible distortions, or biases, include: a focus on harms that we cause, as opposed to those that we can remedy more easily; a feeling that those who cause a problem should fix it; a desire to undo a problem rather than compensate for its presence; parochial concern with one’s own group (nation); and neglect of risks that are not available. Although most of these biases tend to make us attend relatively too much to global warming, other biases, such as wishful thinking, cause us to attend too little. I discuss these possible effects and illustrate some of them with an experiment conducted on the World Wide Web.  相似文献   

8.
This paper exposes flaws in the mathematical structure of the Global Warming Potential (GWP) concept. These lead to errors when emissions changes in different greenhouse gases are compared. The most fundamental problem is that the unit impulse response functions from which GWPs, and many of their proposed alternatives, are constructed provide an incomplete representation of the relationship between emissions and radiative forcing. Additional errors occur when GWPs are used to compare finite-length emissions changes.  相似文献   

9.
This study assesses the possible impact of climatic change on Saudi Arabia's agriculture and water supplies using climatic change scenarios from GCMs (General Circulation Models) and related research. The resulting assessment indicates that an increase in temperature and decrease in precipitation could have a major negative impact on agriculture and water supplies in Saudi Arabia. To find signs of climatic change in Saudi Arabia a preliminaryassessment of systematic changes in temperature and precipitation was made, based on the records of four Saudi weather stations. The analysis of this data, which dates back to 1961, shows no discernable signs of climatic change during the study period. Such data is, however, limited both spatially and temporally and cannot provide conclusive evidence to confirm climatic changes projected by GCMs. Nevertheless, in the light of recent climatic conditions and rapid population growth, Saudi decision-makers are urged to adopt a `no regret' policy. Ideally, such a policy would include measures to avoid future environmental or socioeconomic problems that may occur in the event of significant climatic change.  相似文献   

10.
根据IPCC第4次评估报告(AR4)第10章[1],到2100年全球平均温度相对于1980—1999年平均有可能上升1.1~6.4℃,最佳估计值为1.8~4.0℃。这里给出来的是一个变化范围,但是,要注意这并不是预估的不确定性。1.1℃是最低排放情景B1的下限,6.4℃是最高排放情景A1F1的上限。1.8℃是  相似文献   

11.
张书萍  祝从文  周秀骥 《大气科学》2014,38(5):1005-1016
本文利用1951~2011 年期间中国台站资料、东亚地区的探空资料、NCEP/NCAR 和ERA40 等大气再分析资料,通过对水分平衡方程诊断探讨了华北地区过去60 年中水资源和可利用降水量的变化特征及其与大尺度环流变化之间的关系。结果发现,华北地区69%的降水量被蒸发,可利用降水仅仅为降水量的31%。夏季可利用降水是华北水资源的主要来源,华北夏季可利用降水量在80 年代初发生突变减少,进入21 世纪初,伴随蒸发量的增加该地区可利用降水量进一步减少。西风带水汽与东亚夏季风水汽是华北可利用降水的主要来源。NCAR/NCEP 和EAR40 再分析资料的结果均显示贝加尔湖一带的位势高度偏低和西太平洋高压的偏强有利于该地区降水增多。利用探空资料进一步证明,蒙古以及贝加尔湖地区的温度在对流层低层变暖和位势高度场的加强导致了过去几十年华北可利用降水量减少。由于贝加尔湖地区温度变化与全球变暖存在密切关联,监测该地区温度的变化对预测华北水资源和东亚夏季风的长期变化具有重要的意义。  相似文献   

12.
全球变暖在继续   总被引:3,自引:0,他引:3  
基于全球和中国的观测资料指出,无论全球还是中国,2001-2010年都是有仪器观测记录以来最暖的10年。虽然这10年内的温度上升趋势很弱,但并不意味着气候变暖已经停止。分季节来看,近10年(2001-2010年)冬季中国东北及新疆的气温低于前10年(1991-2000年)。然而,这种区域性和季节性的温度下降并没有影响全国、全年保持变暖的趋势。  相似文献   

13.
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height, at a rate of 5.98 m yr–1 during the cold season, which further contributes to the transition from snowfall to rainfall patterns. Between 1979 and 2020, there has been a decrease in snowfall in the Yellow River Basin at a rate of –3.03 mm dec–1, while rainfall has been increasing at a rate of 1.00 mm dec–1. Consequently, the snowfall-to-rainfall ratio (SRR) has decreased. Snowfall directly replenishes terrestrial water storage (TWS) in solid form until it melts, while rainfall is rapidly lost through runoff and evaporation, in addition to infiltrating underground or remaining on the surface. Therefore, the decreasing SRR accelerates the depletion of water resources. According to the surface water balance equation, the reduction in precipitation and runoff, along with an increase in evaporation, results in a decrease in TWS during the cold season within the Yellow River Basin. In addition to climate change, human activities, considering the region’s dense population and extensive agricultural land, also accelerate the decline of TWS. Notably, irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin (71.8%) and primarily occurs during the warm season (especially from June to August). The impact of human activities and climate change on the water cycle requires further in-depth research.  相似文献   

14.
The Greenland coastal temperatures have followed the early 20th century global warming trend. Since 1940, however, the Greenland coastal stations data have undergone predominantly a cooling trend. At the summit of the Greenland ice sheet the summer average temperature has decreased at the rate of 2.2 °C per decade since the beginning of the measurements in 1987. This suggests that the Greenland ice sheet and coastal regions are not following the current global warming trend. A considerable and rapid warming over all of coastal Greenland occurred in the 1920s when the average annual surface air temperature rose between 2 and 4 °C in less than ten years (at some stations the increase in winter temperature was as high as 6 °C). This rapid warming, at a time when the change in anthropogenic production of greenhouse gases was well below the current level, suggests a high natural variability in the regional climate. High anticorrelations (r = ?0.84 to?0.93) between the NAO (North Atlantic Oscillation) index and Greenland temperature time series suggest a physical connection between these processes. Therefore, the future changes in the NAO and Northern Annular Mode may be of critical consequence to the future temperature forcing of the Greenland ice sheet melt rates.  相似文献   

15.
16.
Global warming during the last century has been a well-known fact. Despite arguments and uncertainties in explanations, most scientists agree that this century-scale warming trend is attributable to human activities. According to the recent assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2007) based on worldwide scientific results,  相似文献   

17.
The increasing heat-trapping gases emitted by human activities into the atmosphere produce an energy imbalance between incoming solar radiation and outgoing longwave radiation that leads to global heating(Rhein et al.,2013;Trenberth et al.,2014;von Schuckmann et al.,2016).The vast majority of global warming heat ends up deposited in the world’s oceans,and ocean heat content(OHC)change is one of the best—if not the best—metric for climate change(Cheng et al.,2019).In 2018,continued record heat was measured in the Earth’s climate system.In fact,2018 has set a new record of ocean heating,surpassing 2017,which was the previous warmest year ever recorded(Cheng et al.,2018)(Fig.1).  相似文献   

18.
随着对气候变暖问题认识的逐步深入,人们开始意识到,要为减缓气候变暖而奋斗。但是,这显然不是少数科学家,乃至个别政府机构能够做到的。因为大气中温室气体浓度增加带来的温室效应加剧所造成的气候影响是全球性的,而且温室气体也不是个别国家排放的。因此,气候变化及其应对本身的性质就注定了这是一个全球性的问题。1988  相似文献   

19.
20.
全球变暖背景下青藏高原夏季大气中水汽含量的变化特征   总被引:1,自引:0,他引:1  
利用中国气象局提供的0. 5°×0. 5°降水和温度的日值资料,联合ERA-Interim、MERRA2(second M odern-Era Retrospective analysis for Research and Applications)和JRA-55(Japanese 55-year Reanalysis)再分析资料以及全球陆面数据同化系统(Global Land surface Data Asimilation System,GLDAS-2. 0)资料,研究了全球变暖背景下青藏高原夏季地表气温及降水的变化特征,以及该地区大气中水汽含量及水汽输送特征。结果表明,1979—1998年期间,高原的地表气温呈增加趋势,降水呈减少趋势;而在全球增温减缓期间(1999—2010年),地表气温及降水较1979—1998年期间呈现更为显著的增加趋势。在青藏高原上空,大气中水汽含量在1979—2010年间整体呈增加趋势;然而,进一步分析表明,在此期间由外界向高原输送的水汽逐年降低,尤其在1998年后,由于西南季风强度的大幅减弱,使得外界向高原的净水汽输送量减少得更为显著;青藏高原地表蒸散量的分析表明,自1998年后,高原地表的蒸散量显著增加,成为高原地区大气中水汽增加的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号