首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact of Sea-Spray on the Atmospheric Surface Layer   总被引:1,自引:0,他引:1  
The feedback effects of sea-spray on the heat and momentum fluxes under equilibrium conditions associated with winds of tropical cyclones are investigated using a one-dimensional coupled sea-spray and atmospheric surface-layer (ASL) model. This model is capable of simulating the microphysical aspects of the evaporation of saline water droplets of various sizes and their dynamic and thermal interaction with the turbulence mixing that is simulated by the Mellor–Yamada 1.5-order closure scheme. Sea-spray droplet generation is described by a state-of-the-art parametrization that predicts the size spectrum of sea-spray droplets for a given surface forcing. The results from a series of simulations indicate the way in which evaporating droplets of various sizes modify the turbulence mixing near the surface, which in turn affects further droplet evaporation. All these results are direct consequences of the effects of sea-spray on the balance of turbulent kinetic energy in the spray-filled surface layer. In particular, the overall impact of sea-spray droplets on the mean wind depends on the wind speed at the level of sea-spray generation. When the wind speed is below 40 m s−1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer, while for wind speeds above 50 m s−1, the size of the droplets is so large that they do not have enough time to evaporate much before falling back into the sea. The sensible heat carried by the droplets is released to the ambient air, increasing the buoyancy of the surface layer and enhancing the turbulent mixing. The suspension of sea-spray droplets reduces the buoyancy and makes the surface layer more stable, decreasing the friction velocity and the downward turbulent mixing of momentum. The results from the numerical experiments also suggest that, in order not to violate the constant flux assumption critical to the Monin–Obukhov similarity theory, a displacement equal to the mean wave height should be included in the logarithmic profiles of the wind and thermal fields.  相似文献   

2.
Resistance of a partially wet canopy: Whose equation fails?   总被引:2,自引:0,他引:2  
Shuttleworth's analysis of evaporation from partly wet canopies is appropriate only for the unrealistic case of dispersed, minute water droplets. When a more realistic model is used, the predicted range of canopy resistances is consistent with experimental estimates for a pine forest.  相似文献   

3.
《Agricultural Meteorology》1983,28(3):261-286
A dynamic model and an analytical model derived therefrom for predicting the gross interception of forest canopies are described. The dynamic model is validated using a running balance in time between rainfall, throughfall, evaporation and changes in the canopy storage. The canopy storage is increased by rainfall interception and depleted by evaporation and drainage. The evaporation rate varies with the amount of water in the canopy and is estimated by numerical methods because sufficient meteorological data are unavailable. Drainage rate expressions, similar to Rutter's exponential relationship between drip rate and water storage, are shown to be inadequate during the period of rainfall. A new drip expression which explicitly includes the rain rate, in addition to the stored water, is proposed and tested. This new expression fits the observed drip rate better and gives significantly better model prediction with fewer empirical parameters than the exponential form of drip rate. However, because one of the drip parameters in the dynamic model varied from one storm to the next and is a complicted function of rainfall characteristics, the dynamic model was simplified to an analytical model for predicting the gross interception loss. This analytical expression is easier to use because it is not sensitive to the exact value of the drip parameters; it predicted the total observed gross interception loss for the 20 storms tested to within 4%. It is suggested that the new drip expression used in the dynamic model describes better the dislodgement of previously intercepted rain droplets by falling rain droplets. Finally, a new model for estimating evaporation rates from forest canopies is proposed and discussed.  相似文献   

4.
Cloud microphysical properties are significantly affected by entrainment and mixing processes. However, it is unclear how the entrainment rate affects the relative dispersion of cloud droplet size distribution. Previously, the relationship between relative dispersion and entrainment rate was found to be positive or negative. To reconcile the contrasting relationships, the Explicit Mixing Parcel Model is used to determine the underlying mechanisms. When evaporation is dominated by small droplets, and the entrained environmental air is further saturated during mixing, the relationship is negative. However, when the evaporation of big droplets is dominant, the relationship is positive. Whether or not the cloud condensation nuclei are considered in the entrained environmental air is a key factor as condensation on the entrained condensation nuclei is the main source of small droplets. However, if cloud condensation nuclei are not entrained, the relationship is positive. If cloud condensation nuclei are entrained, the relationship is dependent on many other factors. High values of vertical velocity, relative humidity of environmental air, and liquid water content, and low values of droplet number concentration, are more likely to cause the negative relationship since new saturation is easier to achieve by evaporation of small droplets. Further, the signs of the relationship are not strongly affected by the turbulence dissipation rate, but the higher dissipation rate causes the positive relationship to be more significant for a larger entrainment rate. A conceptual model is proposed to reconcile the contrasting relationships. This work enhances the understanding of relative dispersion and lays a foundation for the quantification of entrainment-mixing mechanisms.  相似文献   

5.
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41 − 16204.8/T − 12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

6.
利用2015—2017年秋冬季在江苏北部观测到12次雾过程的雾滴谱数据及常规气象观测资料,统计分析了轻雾、大雾、浓雾、强浓雾和特强浓雾等级下的微物理特征量及雾滴谱分布,并通过一次雾过程的分析,探讨了不同雾等级下的主要微物理过程。结果表明:随着雾等级的提升,雾滴数浓度、含水量增长明显,而轻雾、大雾和浓雾的雾滴平均直径和最大直径差异不大,但当能见度小于200 m时,平均直径和最大直径显著增大;能见度下降时,平均数浓度谱和含水量谱的谱线上抬,从浓雾到强浓雾,粒径大于10 μm的大雾滴增长明显;雾滴数浓度主要由小雾滴控制,雾滴含水量受大雾滴影响;东海县郊平均的雾滴含水量与南京观测结果相差不大,但雾滴数浓度仅为南京的一半左右,平均直径大约是南京的2.3倍;个例分析中,能见度从1000 m下降到50 m,凝结核活化并凝结增长是主要微物理过程,但可凝结水汽是影响该过程效果的一个重要因子,可使雾滴数浓度和平均直径呈现不同的相关关系;能见度降到50 m以下时,碰并过程效果显著;日出后雾滴蒸发作用显现并逐步增强。   相似文献   

7.
In HEXOS, a programme of coordinated laboratory, field and model studies, an international group of participants has extended the range of measurements of evaporation from the sea and has investigated the role of droplets in the transfer of water to the atmosphere. Predictions of a rapid rise in the evaporation coefficient at wind speeds above 15 m s-1 have not been substantiated. Wind stress measurements showed a relationship with wave age. New methods were developed for coping with flow distortion.  相似文献   

8.
Based on data of radiation fog events in Xuanen, Hubei province, 2010, this paper analyzes the microphysical process and evolution characteristics of radiation fogs with complicated substrate in the upper and middle reaches of the Yangtze River, and compares them with findings in other areas. Results are as follows: radiation fog in Xuanen is evidently weaker in droplet number concentration and liquid water content than land fogs in other areas. Its liquid water content fluctuates obviously, 0.01g/ m3 with visibility of 1,000 meters, which is quite different from that in urban areas, but similar to the Nanling Mountains. Bi-modal droplet distribution is likely to occur in Xuanen mountain radiation fog (MRF) events. Statistical analysis shows that the observed droplet size distribution can be piecewise described well by the Gamma distribution. There is a positive correlation between liquid water content, fog droplet concentration and mean radius, especially in the development and dissipation stage. Condensation growth and droplet evaporation are major processes of Xuanen MRF. The dissipation time coincided with the time when the grass temperature reached the peak value, which indicated that dew evaporation is a key role in maintaining Xuanen MRF. In the early stage of dense fog’s growth, droplets with diameter of over 20 micrometers can be observed with visibility of 800-1,000m, which might be caused by the transportation of low cloud droplets to earth’s surface by turbulence. Big droplets in the initial stage correspond to higher water content, leading to the higher observed value of water content of Xuanen MRF.  相似文献   

9.
《Atmospheric Research》2007,83(3-4):579-590
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41  16204.8/T  12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

10.
《Atmospheric Research》1988,22(2):149-181
A supercooled continuous flow, thermal gradient diffusion chamber has been developed to study the ice nucleating properties of natural or artificial aerosols. The chamber has concentric cylinder geometry with the cylinder axis alignment and airflow vertically downward. Sample airflow is 1 l min−1 and occupies the central 10% of the annular lamina; it is separated from the ice-covered walls by filtered sheath air. The wall temperatures are independently controlled over the range from about −4°C to −25°C, so that the vapor concentration at the location of the sample lamina can be set to a well defined value between ice saturation and a few percent water supersaturation. There is a range of temperature and supersaturation values across the sample region; for lamina center conditions of −15°C and +1% with respect to water, the range is −14.6 to −15.4°C and +0.53 to +1.31%. Errors in temperature control produce variations estimated as ±0.1°C and ±0.23%. Typical sample residence time is about 10 s. Ice crystals which form on active nuclei are detected optically at the outlet end of the chamber. To enhance the size difference between ice crystals and cloud droplets, the downstream 25% of the warm ice wall is covered with a thermally insulating vapor barrier which reduces the vapor concentration to ice saturation at the cold wall temperature, so cloud droplets evaporate.A mathematical model was developed to describe the temperature and vapor fields and to calculate the growth, evaporation, and sedimentation of water and ice particles. At 1% water supersaturation, the model predicts that ice particles will grow to about 5 μm diameter, and cloud droplets will achieve about 1 μm before they reach the evaporation section of the chamber. A different model was developed to describe the steady state airflow profile and location of the sample lamina.Experimental tests of the chamber were performed to characterize the airflow, to assess the ability of the technique to detect silver iodide ice nucleating aerosols and to distinguish ice crystals from water droplets.  相似文献   

11.
In this paper, the microphysical relationships of 8 dense fog events collected from a comprehensive fog observation campaign carried out at Pancheng(32.2 N, 118.7 E) in the Nanjing area, China in the winter of 2007 are investigated. Positive correlations are found among key microphysical properties(cloud droplet number concentration, droplet size, spectral standard deviation, and liquid water content) in each case, suggesting that the dominant processes in these fog events are likely droplet nucleation with subsequent condensational growth and/or droplet deactivation via complete evaporation of some droplets. The abrupt broadening of the fog droplet spectra indicates the occurrence of the collision-coalescence processes as well, although not dominating. The combined efects of the dominant processes and collision-coalescence on microphysical relationships are further analyzed by dividing the dataset according to visibility or autoconversion threshold in each case. The result shows that the specific relationships of number concentration to volume-mean radius and spectral standard deviation depend on the competition between the compensation of small droplets due to nucleation-condensation and the loss of small droplets due to collision-coalescence. Generally, positive correlations are found for diferent visibility or autoconversion threshold ranges in most cases, although negative correlations sometimes appear with lower visibility or larger autoconversion threshold. Therefore, the compensation of small droplets is generally stronger than the loss, which is likely related to the sufcient fog condensation nuclei in this polluted area.  相似文献   

12.
Some cloud condensation nuclei (CCN) constitute a reservoir of latent ice-forming nuclei (IFN) active by condensation-followed-by-freezing and by sorption. Evaporated droplets occasionally left aerosol particles that acted as sorption IFN at temperatures as high as −5°C and water vapor supersaturation over ice of 0.2%. The newly formed aerosol particles (residues of evaporated droplets) are all mixed particles. The discovery of IFN produced from CCN promotes new insights into the process of ice formation in clouds; in an evaporating parcel of a cloud the rate of formation of ice particles will be enhanced by continuous production of IFN. Aerosol particles left behind after evaporation of a cloud may provide a source of IFN for formation of some of the cirrus clouds.  相似文献   

13.
层状云微物理过程的数值模拟(一)——微物理模式   总被引:19,自引:8,他引:19       下载免费PDF全文
本文提出了一个比较完整的层状云参数化微物理方程组。根据理论和实验结果推导了18种层状云中常见的微物理过程中云滴、雨滴、冰晶、雪团和霰的群体比水量和比浓度的转化率,它们包括凝结(蒸发)、凝华、碰并、聚合、凇附、冰晶的核化、繁生以及冰—霰、雪—霰、云—雨的自动转化率等。  相似文献   

14.
A comprehensive parameterized model of microphysical processes in cumulonimbus clouds is presented.The transformation rates of the water contents and number concentrations of the cloud droplets,rain drops,ice crystals,graupels and hails are deduced on theoretical and experimental results for 26 kinds of micro-physical processes,which include condensation,deposition,evaporation,collection,ice nucleation,ice mul-tiplication,melting,freezing,and autoconversions of cloud to rain,ice to graupel and graupel to hail.  相似文献   

15.
Water vapor flux at the sea surface   总被引:1,自引:0,他引:1  
Methods and instrumentation for determining the rate of evaporation at the sea surface are reviewed. At experimental sites free of local influences, there is a consensus that the evaporation coefficient in neutral conditions C EN = 1.2 × 10–3 at low and moderate wind speeds. Combining this with Businger-Dyer flux-gradient formulas, a parameterization scheme is proposed. Evaporation of spray droplets from breaking waves is expected to cause C EN to increase at high wind speeds, but no direct observations of this are found. Recently it has become possible to estimate water vapor flux in tropical regions from satellite data, opening the possiblity of studying large-scale evaporative events as a function of both time and space.Visiting scholar, Department of Atmospheric Sciences AK-40, University of Washington, Seattle, Washington, 98195, U.S.A. (until June, 1989).  相似文献   

16.
A heavy rainfall event in south China was simulated by the Weather Research and Forecasting (WRF) model with three microphysics schemes, including the Morrison scheme, Thompson scheme, and Milbrandt and Yau scheme (MY), which aim to evaluate the capability to reproduce the precipitation and radar echo reflectivity features, and to evaluate evaluate their differences in microphysics and the associated thermodynamical and dynamical feedback. Results show that all simulations reproduce the main features crucial for rainfall formation. Compared with the observation, the MY scheme performed better than the other two schemes in terms of intensity and spatial distribution of rainfall. Due to abundant water vapor, the accretion of cloud droplets by raindrops was the dominant process in the growth of raindrops while the contribution of melting was a secondary effect. Riming processes, in which frozen hydrometeors collect cloud droplets mainly, contributed more to the growth of frozen hydrometeors than the Bergeron process. Extremely abundant snow and ice were produced in the Thompson and MY schemes respectively by a deposition process. The MY scheme has the highest condensation and evaporation, but the lowest deposition. As a result, in the MY scheme, the enhanced vertical gradient of condensation heating and evaporation cooling at low levels produces strong positive and weak negative potential vorticity in Guangdong, and may favor the formation of the enhanced rainfall center over there.  相似文献   

17.
基于云微物理过程完善的TAU2D分档云模式,模拟研究了用热泡扰动生成的暖云在不同气溶胶数浓度(Na)背景条件下各演变阶段云微物理量的变化特征。结果表明:在暖云的发展过程中Na越高,云滴尺度变小,云滴间的碰并增长发动较晚,云滴谱因碰并增长而实现的滴谱拓宽变弱,云滴谱相对较窄,云滴谱标准差较小,因此云体发展越缓慢,云体生命周期越长,形成降水就越晚;反之,云滴尺度越大,碰并增长发动越早,云滴谱拓宽更明显,云滴谱标准差越大,云体生命周期相对更短,降水开始时刻越早。高Na背景下,碰并阶段云滴谱较凝结阶段更宽,沉降阶段因云体下沉蒸发导致小尺度云滴减少,使其滴谱较碰并阶段略有拓宽。在凝结阶段,低气溶胶背景下云滴数浓度(N)和离散度(ε)间呈现正相关关系,而高气溶胶背景下两者为负相关关系。在碰并阶段,N与ε的相关性关系为负相关,且随着气溶胶数浓度的增加,负相关程度降低。在沉降阶段,N和ε间为负相关关系。  相似文献   

18.
1. IntroductionTheoretical and experimental studies on the phys-ical processes of hail growth (Schumann, 1938; Lud-lan, 1958; List, 1963) showed that its growth rate andstructural characteristics depend on the heat and masstransfers; its dynamic characteristics determine hail-stone's movement and stay in clouds and damage doneto ground bodies, actually controlling the growth in-side clouds. As we know, the heat transfers affectsdirectly hailstone's wet growth, melting and evapo-ration. In the…  相似文献   

19.
The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study.The results indicate that when the cooling effect due to evaporation of rain water is excluded,the simulated 36-h maximum surface wind speed of Typhoon Rananim is about 7 m s-1 greater than that from all other experiments; however,the typhoon landfall location has the biggest bias of about 150 km against the control experiment.The simulated strong outer rainbands and the vertical shear of the environmental flow are unfavorable for the deepening and maintenance of the typhoon and result in its intensity loss near the landfall.It is the cloud microphysical processes that strengthen and create the outer spiral rainbands,which then increase the local convergence away from the typhoon center and prevent more moisture and energy transport to the inner core of the typhoon.The developed outer rainbands are supposed to bring dry and cold air mass from the middle troposphere to the planetary boundary layer (PBL).The other branch of the cold airflow comes from the evaporation of rain water itself in the PBL while the droplets are falling.Thus,the cut-off of the warm and moist air to the inner core and the invasion of cold and dry air to the eyewall region are expected to bring about the intensity reduction of the modeled typhoon.Therefore,the deepening and maintenance of Typhoon Rananim during its landing are better simulated through the reduction of these two kinds of model errors.  相似文献   

20.
The impact of cloud microphysical processes on the simulated intensity and track of Typhoon Rananim is discussed and analyzed in the second part of this study. The results indicate that when the cooling effect due to evaporation of rain water is excluded, the simulated 36-h maximum surface wind speed of Typhoon Rananim is about 7 m s−1 greater than that from all other experiments; however, the typhoon landfall location has the biggest bias of about 150 km against the control experiment. The simulated strong outer rainbands and the vertical shear of the environmental flow are unfavorable for the deepening and maintenance of the typhoon and result in its intensity loss near the landfall. It is the cloud microphysical processes that strengthen and create the outer spiral rainbands, which then increase the local convergence away from the typhoon center and prevent more moisture and energy transport to the inner core of the typhoon. The developed outer rainbands are supposed to bring dry and cold air mass from the middle troposphere to the planetary boundary layer (PBL). The other branch of the cold airflow comes from the evaporation of rain water itself in the PBL while the droplets are falling. Thus, the cut-off of the warm and moist air to the inner core and the invasion of cold and dry air to the eyewall region are expected to bring about the intensity reduction of the modeled typhoon. Therefore, the deepening and maintenance of Typhoon Rananim during its landing are better simulated through the reduction of these two kinds of model errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号